Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение векторов.





Скалярным произведением двух векторов и называется число = т = а1b1+a2b2+...+anbn. Часто вместо используется обозначение (, ).

Если, к примеру, - контейнеры с товарами, а - стоимость одного контейнера, то - суммарная стоимость всех контейнеров.

Скалярное произведение имеет следующие основные свойства:

1. = - коммутативность.

2. ( + )= + - дистрибутивность.

3. k =(k ) = (k ) - любой из векторов можно умножить на число, не равное нулю.

4. > 0 при 0; =0 только в случае =0 - скалярный квадрат не нулевого вектора всегда положителен.

5. Если =0, то векторы и перпендикулярны (ортогональны).

Пространство всех векторов, в котором определено скалярное произведение, называется евклидовым пространством. Легко проверить, что орты описанных ранее пространств попарно ортогональны, т.к. =0 при i j. Таким образом, введенное евклидово пространство векторов имеет ортогональный ортонормированный базис.

 







Дата добавления: 2014-10-22; просмотров: 573. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия