Несобственные интегралы. Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность
Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность. Интегралы с одним или обоими бесконечными пределами получили название несобственных интегралов первого рода. Здесь также можно, на практике, использовать формулу Ньютона-Лейбница, однако следует помнить, что символ - не число, а условное обозначение неограниченного возрастания (или убывания) аргумента в процессе изменения. Т.е., со строгих позиций, вычисление несобственного интеграла первого рода – это вычисление некоторого предела, с постоянным использованием теорем о бесконечно малых и бесконечно больших величинах, приведенных ранее в теме 6 Пределы. Таким образом: ; ; . Т.е., символы бесконечности условно заменяются буквенными параметрами, применяется формула Ньютона-Лейбница, после чего обычным образом вычисляются пределы. Если в результате такого расчета получится число А (включая 0), то ответ следует записать в форме: интеграл сходится к значению А. Если же результатом будет (или ), то ответ: интеграл расходится. При практических вычислениях, как демонстрируется далее в разделе 10.9, вполне допустимо не использовать в явной форме операторы , но не следует забывать о том, что на самом деле вычисляются пределы, а не конкретные числовые значения. Следующим видом несобственных интегралов являются интегралы от функций с разрывом на одном (или обоих) конце интервала интегрирования или с разрывом внутри интервала интегрирования. Например: и т.п. Такие интегралы носят название несобственных интегралов второго рода. Эти интегралы очень опасны, т.к. часто выглядят вполне безобидно, но применение формулы Ньютона-Лейбница приводит к неверным результатам. Вычисление интегралов второго рода осуществляется приведением к интегралам первого рода (или сумме таких интегралов), т.е. ставится задача вычисления предела относительно точки, в которой подынтегральная функция разрывна. Здесь не будем подробно останавливаться на схеме вычисления таких интегралов, т.к., если в прикладной задаче появился интеграл второго рода, то это свидетельствует либо об ошибке расчетчика, либо о некорректности всей математической модели для данной задачи и необходимости изменения этой модели.
|