Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы. Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность





Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность. Интегралы с одним или обоими бесконечными пределами получили название несобственных интегралов первого рода. Здесь также можно, на практике, использовать формулу Ньютона-Лейбница, однако следует помнить, что символ - не число, а условное обозначение неограниченного возрастания (или убывания) аргумента в процессе изменения. Т.е., со строгих позиций, вычисление несобственного интеграла первого рода – это вычисление некоторого предела, с постоянным использованием теорем о бесконечно малых и бесконечно больших величинах, приведенных ранее в теме 6 Пределы. Таким образом:

;

;

.

Т.е., символы бесконечности условно заменяются буквенными параметрами, применяется формула Ньютона-Лейбница, после чего обычным образом вычисляются пределы. Если в результате такого расчета получится число А (включая 0), то ответ следует записать в форме: интеграл сходится к значению А. Если же результатом будет (или ), то ответ: интеграл расходится.

При практических вычислениях, как демонстрируется далее в разделе 10.9, вполне допустимо не использовать в явной форме операторы , но не следует забывать о том, что на самом деле вычисляются пределы, а не конкретные числовые значения.

Следующим видом несобственных интегралов являются интегралы от функций с разрывом на одном (или обоих) конце интервала интегрирования или с разрывом внутри интервала интегрирования. Например: и т.п. Такие интегралы носят название несобственных интегралов второго рода. Эти интегралы очень опасны, т.к. часто выглядят вполне безобидно, но применение формулы Ньютона-Лейбница приводит к неверным результатам.

Вычисление интегралов второго рода осуществляется приведением к интегралам первого рода (или сумме таких интегралов), т.е. ставится задача вычисления предела относительно точки, в которой подынтегральная функция разрывна. Здесь не будем подробно останавливаться на схеме вычисления таких интегралов, т.к., если в прикладной задаче появился интеграл второго рода, то это свидетельствует либо об ошибке расчетчика, либо о некорректности всей математической модели для данной задачи и необходимости изменения этой модели.







Дата добавления: 2014-10-22; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия