Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы. Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность





Если предел интегрирования может быть переменным, то легко представить случай, когда он переходит в бесконечность. Интегралы с одним или обоими бесконечными пределами получили название несобственных интегралов первого рода. Здесь также можно, на практике, использовать формулу Ньютона-Лейбница, однако следует помнить, что символ - не число, а условное обозначение неограниченного возрастания (или убывания) аргумента в процессе изменения. Т.е., со строгих позиций, вычисление несобственного интеграла первого рода – это вычисление некоторого предела, с постоянным использованием теорем о бесконечно малых и бесконечно больших величинах, приведенных ранее в теме 6 Пределы. Таким образом:

;

;

.

Т.е., символы бесконечности условно заменяются буквенными параметрами, применяется формула Ньютона-Лейбница, после чего обычным образом вычисляются пределы. Если в результате такого расчета получится число А (включая 0), то ответ следует записать в форме: интеграл сходится к значению А. Если же результатом будет (или ), то ответ: интеграл расходится.

При практических вычислениях, как демонстрируется далее в разделе 10.9, вполне допустимо не использовать в явной форме операторы , но не следует забывать о том, что на самом деле вычисляются пределы, а не конкретные числовые значения.

Следующим видом несобственных интегралов являются интегралы от функций с разрывом на одном (или обоих) конце интервала интегрирования или с разрывом внутри интервала интегрирования. Например: и т.п. Такие интегралы носят название несобственных интегралов второго рода. Эти интегралы очень опасны, т.к. часто выглядят вполне безобидно, но применение формулы Ньютона-Лейбница приводит к неверным результатам.

Вычисление интегралов второго рода осуществляется приведением к интегралам первого рода (или сумме таких интегралов), т.е. ставится задача вычисления предела относительно точки, в которой подынтегральная функция разрывна. Здесь не будем подробно останавливаться на схеме вычисления таких интегралов, т.к., если в прикладной задаче появился интеграл второго рода, то это свидетельствует либо об ошибке расчетчика, либо о некорректности всей математической модели для данной задачи и необходимости изменения этой модели.







Дата добавления: 2014-10-22; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия