Применение определенного интеграла к вычислению площадей
Геометрический смысл определенного интеграла как площади криволинейной трапеции дает возможность применить его к вычислению любых площадей. Однако определенный интеграл в интервале далеко не всегда дает значение площади как физической величины, измеряемой в квадратных единицах. Необходимо учесть, что геометрический смысл построен на формальном приписывании знаков: части функции над осью оХ (и площадь под ними) принимаются со знаком " плюс", а части функции под осью оХ (и площадь над ними) берутся со знаком " минус". Очевидно, что если поставить задачу о вычислении собственно площадей, то обязательно следует учесть строгую положительность понятия площади как физической величины. Чтобы полностью разобраться с разницей между геометрическим смыслом интеграла и площадью, рассмотрим пример: вычислить интеграл и площадь, которую ограничивает подынтегральная функция.
Как и следовало ожидать, результаты совпали. Подсчитаем площадь. 3. квадратных единиц. Здесь знак модуля обеспечивает безусловную положительность результатов и соответствие физическому смыслу. Таким образом, общая формула для вычисления площади с применением определенного интеграла будет иметь вид , где - число подинтервалов, на которые разбивается площадь под кривой ; - абсциссы начала и конца подинтервала. Определение площади следует производить в два этапа. На первом решается уравнение и находится число подинтервалов. На втором этапе применяется формула площади. Рекомендуется выполнить эскиз расчетной области. В трудных случаях можно использовать графическое разложение сложной фигуры на сумму более простых.
|