Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение определенного интеграла к вычислению площадей





Геометрический смысл определенного интеграла как площади криволинейной трапеции дает возможность применить его к вычислению любых площадей. Однако определенный интеграл в интервале далеко не всегда дает значение площади как физической величины, измеряемой в квадратных единицах. Необходимо учесть, что геометрический смысл построен на формальном приписывании знаков: части функции над осью оХ (и площадь под ними) принимаются со знаком " плюс", а части функции под осью оХ (и площадь над ними) берутся со знаком " минус". Очевидно, что если поставить задачу о вычислении собственно площадей, то обязательно следует учесть строгую положительность понятия площади как физической величины. Чтобы полностью разобраться с разницей между геометрическим смыслом интеграла и площадью, рассмотрим пример: вычислить интеграл и площадь, которую ограничивает подынтегральная функция.

1. Вычислим интеграл: . 2. По геометрическому смыслу интеграл является алгебраической суммой площадей нижнего и верхнего треугольников, т.е.
Нарисуем эскиз расчетной области и проведем вычисления по пунктам:

 
 

Как и следовало ожидать, результаты совпали. Подсчитаем площадь.

3. квадратных единиц.

Здесь знак модуля обеспечивает безусловную положительность результатов и соответствие физическому смыслу. Таким образом, общая формула для вычисления площади с применением определенного интеграла будет иметь вид

,

где - число подинтервалов, на которые разбивается площадь под кривой ; - абсциссы начала и конца подинтервала.

Определение площади следует производить в два этапа. На первом решается уравнение и находится число подинтервалов. На втором этапе применяется формула площади. Рекомендуется выполнить эскиз расчетной области. В трудных случаях можно использовать графическое разложение сложной фигуры на сумму более простых.







Дата добавления: 2014-10-22; просмотров: 637. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия