Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула трапеций





Точность расчетов с помощью теоремы о среднем существенно зависит, как было показано, от визуального назначения по графику точки . Действительно, выбрав, в том же примере, точки или , можно получить другие значения интеграла, причем погрешность может и увеличиться. Субъективные факторы, масштаб графика и качество рисования сильно влияют на результат. Это неприемлемо в ответственных расчетах, поэтому теорема о среднем применяется только для быстрой качественной оценки интеграла.

В этом разделе рассмотрим один из самых популярных способов приближенного интегрирования – формулу трапеций. Основная идея построения этой формулы исходит из того, что кривую можно приближенно заменить ломаной линией, как показано на рисунке.

Тогда из геометрического смысла определенного интеграла следует, что площадь криволинейной трапеции заменяется суммой площадей нескольких прямоугольных трапеций. Ясно, что чем точнее проводится ломаная (т.е., чем больше прямолинейных отрезков в ее составе), тем ближе она к реальной кривой и сумма площадей элементарных трапеций сходится к точному значению площади криволинейной трапеции и, следовательно, к значению данного интеграла.

Примем, для определенности (и в соответствии с рисунком), что интервал интегрирования разбит на равные (это необязательно, но очень удобно) части. Длина каждой из этих частей вычисляется по формуле и называется шагом. Абсциссы точек разбиения, если задано , определятся по формуле , где . По известным абсциссам легко вычислить ординаты . Таким образом,

.

Это и есть формула трапеций для случая . Отметим, что первое слагаемое в скобках является полусуммой начальной и конечной ординат, к которой прибавляются все промежуточные ординаты. Для произвольного числа разбиений интервала интегрирования общая формула трапеций имеет вид

.

Точность формулы трапеций зависит от принимаемого (самостоятельно) числа разбиений . Хотя в учебной литературе приводятся способы оценки погрешности этой формулы, на практике удобно произвести два расчета (в ответственных задачах) при разных значениях . На пример, при и . Если результаты близки, то расчет заканчивается, иначе рекомендуется повторить вычисления при или . Расчеты удобно производить в табличной форме или на компьютере.

Отметим, что имеется большой ряд и других способов численного интегрирования или, иначе, квадратурных формул: прямоугольников, Симпсона, Гаусса и т.д. Они строятся на той же идее представления криволинейной трапеции элементарными площадями различной формы, поэтому, после освоения формулы трапеций, разобраться в аналогичных формулах не составит особого труда. Многие формулы не так просты, как формула трапеций, но позволяют получить результат высокой точности при малом числе разбиений .

С помощью формулы трапеций (или аналогичных) можно вычислять, с нужной на практике точностью, как " неберущиеся" интегралы, так и интегралы от сложных или громоздких функций.

 

 







Дата добавления: 2014-10-22; просмотров: 921. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия