Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Градиент функции двух переменных





Для анализа направления изменения функции двух переменных в пространстве весьма полезной является векторная характеристика – градиент. Градиентом (или вектор - градиентом) функции называется вектор, координатами которого являются частные производные функции:

.

Таким образом, линии уровня можно построить следующим образом. Предположим, мы начинаем с точки M0(x0, y0). Построим в ней градиент. Задаем направление, перпендикулярное градиенту. Оно позволяет построить малую часть линии уровня. Далее рассмотрим близкую точку M1(x1, y1) и построим градиент в ней. Продолжая этот процесс, можно (с определенной погрешностью) построить линии уровня.
Здесь Ñ - обозначение градиента (оператор Гамильтона " набла "). Градиент функции в данной точке характеризует направление максимальной скорости изменения функции в этой точке. Зная градиент функции в нескольких точках, можно, по крайней мере, локально, строить линии уровня функции на основе следующей теоремы: пусть задана дифференцируемая функция и пусть в точке величина градиента отлична от нуля. Тогда градиент перпендикулярен линии уровня (точнее, касательной к линии уровня), проходящей через данную точку.

Как и в случае обычных векторов, длину (или модуль) вектора – градиента можно определить в каждой точке по формуле

Модуль градиента – величина максимальной скорости изменения функции в данной точке по направлению, показываемому вектором – градиентом.







Дата добавления: 2014-10-22; просмотров: 1425. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия