Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Абсолютные экстремумы функции двух переменных





Как и в случае одной переменной, функция имеет узловые, определяющие структуру графика точки. В первую очередь это точки экстремума – минимума и максимума.

Функция имеет максимум (минимум) в точке , если в любой, близкой к ней точке значения функции меньше (больше) значения .

Процедура отыскания экстремумов функции во многом подобна задаче для функции одной переменной. Сформулируемнеобходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке ее первые частные производные равны нулю.

Таким образом, возможные точки экстремума (или стационарные точки ) определятся из системы уравнений:

.

Так же, как и в случае функции одной переменной, если в области определения первых производных имеются точки, где производные равны бесконечности (или не существуют), то их следует включить в состав стационарных точек.Необходимое условие экстремума можно переформулировать также следующим образом: в точке минимума или максимума дифференцируемой функции градиент равен нулю.

Для определения фактического наличия экстремума и его типа необходимо применить достаточное условие. Аналог первого достаточного условия экстремума (по изменению знака производных при переходе через стационарную точку) на практике используется редко, из-за громоздкости вычислений и недостаточной наглядности. В связи с этим обычно используется аналог второго достаточного условия, который формулируется следующим образом:







Дата добавления: 2014-10-22; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия