Абсолютные экстремумы функции двух переменных
Как и в случае одной переменной, функция имеет узловые, определяющие структуру графика точки. В первую очередь это точки экстремума – минимума и максимума.
Процедура отыскания экстремумов функции во многом подобна задаче для функции одной переменной. Сформулируемнеобходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке ее первые частные производные равны нулю. Таким образом, возможные точки экстремума (или стационарные точки ) определятся из системы уравнений: . Так же, как и в случае функции одной переменной, если в области определения первых производных имеются точки, где производные равны бесконечности (или не существуют), то их следует включить в состав стационарных точек.Необходимое условие экстремума можно переформулировать также следующим образом: в точке минимума или максимума дифференцируемой функции градиент равен нулю. Для определения фактического наличия экстремума и его типа необходимо применить достаточное условие. Аналог первого достаточного условия экстремума (по изменению знака производных при переходе через стационарную точку) на практике используется редко, из-за громоздкости вычислений и недостаточной наглядности. В связи с этим обычно используется аналог второго достаточного условия, который формулируется следующим образом:
|