Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Заметим, что полное приращение функции, чаще всего,не равно суммечастных, т.е





После определения частных приращений понятие частной производной вводится точно так же, как и для функции одного переменного: частной производной функции нескольких переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной независимой переменной при стремлении последнего к нулю.

Обозначения: и аналогично – по у. Обычно используются все эти обозначения. Таким образом, для функции z=f(x, у) по определению:

Геометрический смысл частных производных функции z=f(x, у) в точке менее нагляден, чем для функции одного аргумента, но определяется точно так же. Если в данной точке поверхности провести две касательные в направлении осей х и у, то тангенсы углов наклона этих касательных ( угловые коэффициенты касательных) по отношению к соответствующим осям и являются частными производными. Аналогичен и физический смысл: частная производная является скоростью изменения функции z=f(x, у) в данной точкепо направлению оси оХ, а - по направлению оси оY.

Все теоремы и свойства для производной первого порядка функции одной переменной, изложенные ранее в теме 7, без каких-либо изменений переносятся и на частные производные. Единственным существенным дополнением, вытекающим из определения частных производных, является то, что при дифференцировании по одному аргументу, второй, в этом процессе, считаетсяпостояннымчислом.

В теме 7 дифференциал функции y=f(x) определялся как главная, линейная относительно , часть приращения функции, равная произведению . Аналогично, для частных производных можно определить и частные дифференциалы и . Наконец, полным дифференциалом функции двух переменных z=f(x, у) называется сумма частных дифференциалов, т.е. .







Дата добавления: 2014-10-22; просмотров: 669. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия