Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы теории ортогональных сигналов





 

Введём понятие скалярного произведения элементов линейного пространства. Скалярное произведение вещественных сигналов u и v:

(1.6)

Скалярное произведение обладает следующими свойствами:

1.

2.

3. , где - вещественное число

4.

5. - справедливо неравенство Коши-Буняковского.

Линейное пространство с таким скалярным произведением, содержащее в себе все предельные точки любых сходящихся последовательностей векторов из этого пространства называется вещественным Гильбертовым пространством H.

Если сигналы принимают комплексные значения, то можно определить комплексное Гильбертово пространство.

Если сигналы комплексные, то скалярное произведение:

(1.7)

Два сигнала и называют ортогональными, если их скалярное произведение, а значит, и взаимная энергия равны нулю:

(1.8)

Предположим, что на отрезке задана бесконечная система функций , ортогональных друг другу и обладающих единичными нормами:

1, если (1.9)

0, если

Говорят, что при этом в пространстве сигналов задан ортонормированный базис. Разложим произвольный сигнал в ряд:

(1.10)

Такое представление называется обобщённым рядом Фурье сигнала в выбранном базисе.

Коэффициенты данного ряда находят следующим образом. Возьмём базисную функцию с произвольным номером , умножим на неё обе части равенства (1.10) и затем проинтегрируем результаты по времени:

(1.11)

Ввиду ортонормированности базиса по определению в правой части равенства (1.11) останется только член суммы с номером , поэтому:

(1.12)

Рассмотрим некоторый сигнал, , разложенный в ряд по ортонормированной базисной системе и вычислим его энергию, непосредственно подставив этот ряд в соответствующий интеграл:

(1.13)

Поскольку базисная система функций ортонормирована, в сумме (1.13) отличными от нуля окажутся только члены с номерами . Отсюда получается замечательный результат, который называется равенством Парсеваля:

(1.14)

Смысл этой формулы: энергия сигнала есть сумма энергий всех компонент, из которых складывается обобщённый ряд Фурье.

 

Раздел 2. Спектральные представления сигналов







Дата добавления: 2014-11-12; просмотров: 1076. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия