Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Спектральные представления сигналов с использованием негармонических функций





Для представления непрерывных сигналов используются различные системы ортогональных функций.

I. Для представления непрерывных сигналов используются преимущественно ортогональные функции и полиномы Лежандра, Чебышева, Лагерра и Эрмита.

 

1) Полиномы Лежандра (1-го рода) определяются формулой:

,

Ряд выглядит следующим образом:

,

Спектральные коэффициенты определяются формулой:

,

2) Полиномы Чебышева (1-го рода) определяются формулой:

Ряд:

- коэффициенты ряда

 

График полинома Чебышева 4-го порядка:

Полиномы Чебышева обеспечивают наименьшую максимальную ошибку аппроксимации на интервале . Эффективны для аппроксимации АЧХ различных фильтров.

 

3) Полиномы Лагерра определяются формулой

Так как полиномы Лагерра образуют систему расходящихся при функций, то удобнее пользоваться функциями Лагерра

Разложение в ряд по функциям Лагерра

коэффициенты должны определяться по формуле:

Функции Лагерра получили широкое распространение в измерительной технике и в многоканальных системах связи, что объясняется простотой их генерирования.

 

4) Полиномы Эрмита определяются формулой:

Разложение в ряд по нормированным функциям Эрмита:

- коэффициенты ряда (спектральные составляющие)

Полиномы Эрмита отличаются от полиномов Лагерра тем, что полиномы Лагерра определены на интервале, представляющем собой полуось , а полиномы Эрмита – на интервале, представляющем собой всю ось .

 

II. Для представления дискретных сигналов используются в основном функции Уолша.

 

Чаще всего используются функции Уолша, которые на отрезке своего существования принимают лишь значения .

Введём безразмерное время , тогда k-ая функция Уолша обозначается символом .

Разложение сигнала в ряд по функциям Уолша на заданном отрезке времени имеет вид:

- коэффициенты ряда.

Графики функций Уолша

 

 

 

 

 

 

 

 

III. Вейвлет – анализ.

 

Если сигнал не имеет чёткого периодического характера, то алгоритмы преобразования Фурье становятся менее эффективными.

Эта проблема в последние годы решается с помощью нового подхода в теории и технике сигналов – вейвлет–анализа.

Wavelet – в переводе с английского “небольшая волна” или “небольшое колебание”.

 

С помощью вейвлет–анализа можно представлять как дискретные, так и непрерывные сигналы.

а) В основе дискретного вейвлет–анализа лежит использование исходного (или порождающего) вейвлета Хаара. Эта функция существует на отрезке [0, 1] и принимает одно из двух возможных значений.

- безразмерное время

Ортонормированная базисная система вейвлетов Хаара строится за счёт операций сдвига во времени и изменения временного масштаба.

Тогда сигнал можно разложить в ряд по этим функциям, следующим образом:

На основании предыдущего, коэффициенты являются скалярными произведениями исходного сигнала и соответствующей базисной функции:

Данный ряд отличается от изучавшегося ранее тем, что суммирование производится не по одному, а по двум индексам.

Вейвлет – спектр сигнала, принимающего вещественные значения, можно образно представить себе как некоторый “лес” из вертикальных отрезков, размещенных над j k – плоскостью в точках с целочисленными координатами. При этом координата j указывает на скорость изменения сигнала, а координата k – на положение вдоль оси времени.

б) Для анализа непрерывных сигналов пользуются непрерывными вейвлетами.

Примером может служить вейвлет типа “сомбреро”:

Вейвлет–преобразованием является функция двух переменных:

По своему смыслу вейвлет–преобразование соответствует преобразованию Фурье, только вместо функции используется вейвлет .

Вейвлет–преобразование является функцией двух аргументов, первый из которых аналогичен периоду колебания (т.е. обратной частоте), а второй – смещению сигнала вдоль оси времени.

Обратное вейвлет–преобразование:

Вейвлет–анализ особенно эффективен при решении задач сжатия и распознавания сигналов. Алгоритмы вейвлет–анализа представлены в составе прикладного пакета Mathlab.


Раздел 3. Сигналы с ограниченным спектром

 

Для восстановления сигнала по его спектру необходимо учитывать все составляющие с частотами, лежащими в интервале от нуля до бесконечности. Однако с физической точки зрения такая процедура принципиально неосуществима.

К тому же вклад спектральных составляющих при пренебрежимо мал в силу ограниченности энергии сигналов. Кроме того, любое реальное устройство, предназначенное для передачи и обработки сигналов, имеет конечную ширину полосы пропускания.

Поэтому на практике обычно используется математическая модель сигнала с ограниченным спектром. Сигналы, спектральная плотность которых отлична от нуля лишь в пределах некоторой полосы частот конечной протяжённости, называются сигналами с ограниченным спектром.

 







Дата добавления: 2014-11-12; просмотров: 1714. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия