Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Некоторые математические модели сигналов с ограниченным спектром





 

1) Рассмотрим колебание с постоянной вещественной спектральной плотностью в пределах отрезка оси частот от до верхней граничной частоты , вне этого отрезка спектральная плотность сигнала обращается в нуль:

(3.1)

Мгновенное значение такого сигнала:

(3.2)

Спектральная плотность такого сигнала:

Такое колебание называется идеальным низкочастотным сигналом (ИНС). График ИНС, построенный по формуле (3.2) имеет вид осциллирующей кривой относительно отсчёта времени. С увеличением верхней граничной частоты спектра возрастают как центральный максимум, так и частота осцилляций.

 

ИНС более общего вида получается, если в формулу (3.1) ввести фазу спектральной плотности, линейно зависящую от частоты.

(3.3)

Спектральной плотности соответствует низкочастотный сигнал, смещённый во времени относительно сигнала (3.2) на секунд.

 

(3.4) ИНС является идеализированной выходной реакцией фильтра низких частот (ФНЧ), возбуждаемого колебанием с равномерной по частоте спектральной плотностью, т.е. дельта-импульсом.

2) Исследуем математическую модель сигнала, спектр которого ограничен полосами частот шириной каждая с центрами на частотах . Если в пределах этих полос спектральная плотность сигнала постоянна:

(3.5)

По аналогии с предыдущим данный сигнал будем называть идеальным полосовым сигналом (ИПС).

Мгновенные значения ИПС найдём, используя обратное преобразование Фурье:

(3.6)

Спектральная плотность ИПС:

Строя график ИПС, видим что наряду с высокочастотными осцилляциями на частоте наблюдается изменение во времени мгновенного значения их амплитуды. Функция с точностью до масштабного коэффициента играет роль медленной огибающей ИПС.

Теоретически возможный способ получения ИПС очевиден: на вход идеального полосового фильтра, пропускающего лишь колебания с частотами в пределах полосы , должно быть подано широкополосное воздействие вида дельта-импульса.

Свойство ограниченности спектра позволяет находить интересные и важные классы ортогональных сигналов. Простейший пример – два ортогональных полосовых сигнала, области существования спектра которых не пересекаются.

Менее очевидный способ ортогонализации сигналов с ограниченным спектром заключается в их временном сдвиге. Рассмотрим два идеальных низкочастотных сигнала и . Оба этих сигнала имеют одинаковые параметры и (см. формулу 3.2), однако сигнал запаздывает по отношению к на время , так что его спектральная плотность . Скалярное произведение этих сигналов, вычисленное через спектральные плотности.

(3.7)

Скалярное произведение обращается в нуль и два одинаковых по форме ИНС оказываются ортогональными, если временной сдвиг удовлетворяет условию.

Минимально возможный сдвиг приводящий к ортогонализации, получается при :

(3.8)

График двух идеальных низкочастотных сигналов:

В момент времени, когда один из сигналов достигает максимума, другие сигналы из данного семейства проходят через нуль.







Дата добавления: 2014-11-12; просмотров: 1886. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия