Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Котельникова





 

Эта теорема (доказана академиком Котельниковым В.А. в 1933 г.), устанавливает возможность сколь угодно точного восстановления мгновенных значений сигнала с ограниченным спектром, исходя из отсчетных значений (выборок), взятых через равные промежутки времени.

Любые два сигнала с ограниченным спектром, принадлежащие семейству (3.9)

являются ортогональными если установить сдвиг

Путём соответствующего выбора амплитудного множителя А можно добиться того, чтобы норма каждого из этих сигналов стала единичной. В результате будет построен ортонормированный базис, позволяющий разложить произвольный сигнал с ограниченным спектром в обобщённый ряд Фурье. Из семейства функции достаточно рассмотреть лишь функцию при k=0.

(3.10)

так как норма любого сигнала одинакова независимо от сдвига во времени. Определим квадрат нормы и проинтегрируем по t.

Функции будут ортонормированными, если:

(3.11)

Бесконечная совокупность функций.

(3.12)

образует базис Котельникова в линейном пространстве низкочастотных сигналов со спектрами, ограниченными сверху значением . Отдельная функция называется k-той отсчётной функцией. Если произвольный сигнал, спектральная плотность которого отлична от нуля лишь в полосе частот то его можно разложить в обобщенный ряд Фурье по базису Котельникова:

(3.13)

Коэффициентами ряда служат, как известно, скалярные произведения разлагаемого сигнала и k-той отсчётной функции:

(3.14)

Удобный способ вычисления этих коэффициентов заключается в применении теоремы Планшереля. Легко проверить, что каждая отсчётная функция в пределах отрезка имеет спектральную плотность, равную .

Тогда, если - спектр излучаемого сигнала S(t), то по теореме Планшереля ,

Тогда:

(3.15)

Величина в фигурных скобках есть не что иное, как , т.е. мгновенное значение сигнала S(t) в каждой отсчётной точке (по аналогии с )

Таким образом:

(3.16)

Откуда следует выражение ряда Котельникова:

(3.17)

Теорему Котельникова принято формулировать так: произвольный сигнал, спектр которого не содержит частот выше Гц, может быть полностью восстановлен, если известны отсчётные значения этого сигнала, взятые через равные промежутки времени с.

Важная особенность теоремы Котельникова состоит в её конструктивном характере: она не только указывает на возможность разложения сигнала в соответствующий ряд, но и определяет способ восстановления непрерывного сигнала, заданного своими отсчётными значениями.

Теорема Котельникова показывает возможность «цифровизации» непрерывных сообщений.

 








Дата добавления: 2014-11-12; просмотров: 1141. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.057 сек.) русская версия | украинская версия