Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические основы. При наличии определенной симметрии в расположении зарядов, в некоторых случаях для расчета напряженности электрического поля применяется теорема Гаусса:





При наличии определенной симметрии в расположении зарядов, в некоторых случаях для расчета напряженности электрического поля применяется теорема Гаусса:

 

, (3.1)

Поток вектора напряженности в левой части выражения (3.1) вычисляется по любой наиболее удобной замкнутой поверхности S, а в правой части учтены только заряды Qi, заключенные внутри этой поверхности.

При непрерывном распределении зарядов суммирование зарядов в правой части уравнения (3.1) заменяется интегрированием плотности электрического заряда ρ по объему V, охватываемому замкнутой поверхностью S:

, (3.2)

Чтобы избежать затруднений связанных с выбором замкнутой поверхности S при использовании теоремы Гаусса, необходимо найти направление вектора в пространстве, окружающем заряженное тело из соображений симметрии. При этом точка, в которой определяют вектор напряженности, должна принадлежать замкнутой поверхности интегрирования S. Поверхность S выбирают симметричной расположению зарядов, а ее составные части должны быть либо перпендикулярны (Si), либо касательные к вектору напряженности (Sj).

В этом случае поток вектора напряженности через замкнутую поверхность можно представить как сумму поверхностных интегралов:

, (3.3)

где вторая сумма равна нулю , а первая преобразуется к виду , где α i = 0 или α i = π.

Напряжённость и потенциал связаны между собой следующими соотношениями

или (3.4)

 

Потенциал электрического поля в заданной точке А определяется по известной функциональной зависимости . При этом принимают, что потенциал поля в точке Р равен нулю. Для точечных и сферически симметричных зарядов эту точку удобно располагать на бесконечности. Из формулы (2.17) следует разность потенциаловмежду двумя точками поля А и В

, (3.5)

 

3.2. Примеры решения заданий для выполнения расчётно-графических работ

Пример 3.1. На поверхности бесконечного полого цилиндра, радиусом R = 10 см равномерно распределен заряд с линейной плотностью τ = 1 нКл/м.

1. Построить график изменения напряженности электрического поля в зависимости от расстояния до оси цилиндра Е = Е (r).

2. Найти разность потенциалов между осью цилиндра и точкой А, находящейся на расстоянии d = 20 см от нее.







Дата добавления: 2014-11-12; просмотров: 696. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия