Круговая диаграмма асинхронной машины. Построение диаграммы
Эксплуатационные и другие характеристики асинхронных машин могут быть найдены с помощью испытаний нагруженной машины. Но проведение испытаний не всегда реализуемо. В этом случае характеристики получают с помощью круговых диаграмм, которые могут быть построены по результатам испытаний машины в режиме холостого хода и при заторможенном роторе. Рассмотрим схему эквивалентной цепи, представленной Чтобы получить вектор входного тока , необходимо геометрически сложить независимый от скольжения вектор намагничивающего тока с изменяющимся вектором главной цепи , который зависит от скольжения . В соответствии со схемой замещения , откуда ; разделив уравнение на , получаем: ; . Рассмотрим полученные уравнения с точки зрения изменения скольжения асинхронной машины. Вектор левой части не зависит от скольжения и расположен под 90 ° по отношению к вектору , первое слагаемое правой части равно нулю, при условии , т. е. тогда, когда скольжение ; и в этом случае . С другой стороны, это слагаемое отстает от тока на угол в 90 °. В результате сложения получаем результирующий вектор ,
который не зависит от скольжения. Перечисленные векторы образуют прямоугольный треугольник, катетами которого являются векторы (катет OE) и (катет EL), длины которых изменяются с изменением скольжения, а гипотенуза OL, пропорциональная вектору , остается неизменной (рис. 6.35).
При изменении скольжения конец вектора опишет окружность. Добавляя к вектору вектор , получим входной ток двигателя . При изменении скольжения конец вектора будет скользить по той же окружности. Полученная таким образом геометрическая фигура позволяет определить изменение модуля тока сети питания и его фазового сдвига относительно входного напряжения. На рис. 6.36 представлена круговая диаграмма асинхронного двигателя. Диаметр окружности определен вектором , длина которого пропорциональна напряжению и зависит от параметров двигателя . Нами получена векторная диаграмма асинхронной машины. Она может быть построена по известным значениям тока холостого хода и тока двигателя при заторможенном роторе. Ток холостого хода и ток заторможенного двигателя могут быть определены теоретически или экспериментально (см. рис. 6.36). Рис. 6.36
Для определения необходимо подключить машину к сети питания при отсутствии нагрузки и измерить входное напряже- , таким образом . На круговой диаграмме ток холостого хода представлен отрезком OO¢. Для определения тока короткого замыкания , ротор машины должен быть заторможен, а обмотка ротора закорочена, если испытывается машина с фазным ротором. На статорную обмотку подается небольшое напряжение, при котором ток обмотки статора будет равен номинальному значению . При номинальном токе первичной обмотки измеряют напряжение и мощность короткого замыкания . Фазовый сдвиг тока короткого замыкания и напряжения определяются из формулы . Ток короткого замыкания при номинальном напряжении определяется на основании предположения, что ток обмотки статора пропорционален напряжению , где - напряжение на зажимах двигателя при заторможенном роторе и номинальном токе обмотки статора. Для построения круговой диаграммы выбирают масштаб и строят токи и , затем проводят прямую параллельно оси абсцисс. На этой прямой находится центр окружности. Соединив концы вектора и , получают отрезок, из середины которого необходимо восстановить перпендикуляр до пересечения с лини-
|