Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Явная разностная схема





Рассмотрим исходное уравнение (165) в n -й момент времени в k -ой точке пространства. Тогда правая часть уравнения (165) – первая частная производная по времени будет представлена так:

. (171)

Поскольку производная по времени, поэтому изменяется индекс n.

Вторая частная производная в сеточной области определяется как отношение разности 1-х производных по длине шага сетки.

. (172)

С помощью этих равенств производная с 1-м порядком точности относительно шага Dt и частная производная со 2-м порядком точности относительно шага Dx аппроксимируется в конечно-разностные отношения.

Производим замену в уравнении (165).

. (173)

. (174)

Из (174) видно, что по значению функции c(x, t) в точках n -го временного слоя можно вычислить значение функции c(x, t) в точках n+ 1 временного слоя, т. е. мы имеем явную схему (рис. 104).

 
 

Рис. 104. Явная схема

Значение c(x, t) при t=0 определяется из начальных условий: для (нижняя граница сетки).

Значение функции с(x, t) в крайних узлах при х =0 и х = L определяется из краевых условий:

1. для (левая граница сетки).

2. Для расчета концентраций в сеточной области также необходимо знать CKn – концентрацию на границе (L) (концентрацию на парвом конце сетки), которая вычисляется из граничного условия:

,

откуда следует, что

.

Последовательно вычисляя С (xк, t 1) для , затем C (xк, t 2) для и т. д. до C (xк, tN) получим профиль концентраций в произвольный момент времени в произвольной точке пространства.

Таким образом, уравнение (174) представляет собой систему уравнений, которая рассчитывается раз:

(175)







Дата добавления: 2014-11-12; просмотров: 1010. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия