Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Явная разностная схема





Рассмотрим исходное уравнение (165) в n -й момент времени в k -ой точке пространства. Тогда правая часть уравнения (165) – первая частная производная по времени будет представлена так:

. (171)

Поскольку производная по времени, поэтому изменяется индекс n.

Вторая частная производная в сеточной области определяется как отношение разности 1-х производных по длине шага сетки.

. (172)

С помощью этих равенств производная с 1-м порядком точности относительно шага Dt и частная производная со 2-м порядком точности относительно шага Dx аппроксимируется в конечно-разностные отношения.

Производим замену в уравнении (165).

. (173)

. (174)

Из (174) видно, что по значению функции c(x, t) в точках n -го временного слоя можно вычислить значение функции c(x, t) в точках n+ 1 временного слоя, т. е. мы имеем явную схему (рис. 104).

 
 

Рис. 104. Явная схема

Значение c(x, t) при t=0 определяется из начальных условий: для (нижняя граница сетки).

Значение функции с(x, t) в крайних узлах при х =0 и х = L определяется из краевых условий:

1. для (левая граница сетки).

2. Для расчета концентраций в сеточной области также необходимо знать CKn – концентрацию на границе (L) (концентрацию на парвом конце сетки), которая вычисляется из граничного условия:

,

откуда следует, что

.

Последовательно вычисляя С (xк, t 1) для , затем C (xк, t 2) для и т. д. до C (xк, tN) получим профиль концентраций в произвольный момент времени в произвольной точке пространства.

Таким образом, уравнение (174) представляет собой систему уравнений, которая рассчитывается раз:

(175)







Дата добавления: 2014-11-12; просмотров: 1010. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия