Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример выполнения. Рассмотрим процесс расчета профиля концентрации вещества по пространственной и временной координате для объекта





Рассмотрим процесс расчета профиля концентрации вещества по пространственной и временной координате для объекта, описываемого следующим уравнением:

,

где С – концентрация вещества; D – коэффициент диффузии; t – время; x – пространственная координата.

Начальные условия:

Граничные условия:

,

Расчет проведем в среде Mathcad.

1. Сначала зададим исходные данные для расчета:

–коэффициент диффузии,

– начальная концентрация,

– начальное значение пространственной координаты,

– конечное значение пространственной координаты,

– шаг дискретизации по пространственной координате.

2. Выбираем шаг дискретизации по времени так, чтобы выполнялось условие устойчивости явной разностной схемы:

– шаг дискретизации по времени,

– начальное время,

– конечное время,

3. Рассчитываем количество точек разбиения временного и пространственного интервалов для метода сетки:

,

– для временного интервала,

,

– для пространственного интервала.

4. Рассчитаем массивы временного и пространственного интервалов (индекс k – порядковый номер элементов в массиве пространственной координаты, индекс n – порядковый номер элементов в массиве времени):

5. Используя инструменты программирования Mathcad, составим функцию, реализующую расчет профиля концентраций по явной разностной схеме:

6. Осуществим вызов данной функции и возврат её результатов в массив C:

7. Выведем на экран содержимое массивов x, t и C. Для этого после имени массива поставим знак «=».

8. Представим полученную зависимость концентрации от времени и длины в виде объемного графика (рис. 105):

 
 

Рис. 105. Изменение концентрации по времени и длине

9. Представим распределение концентрации в конкретных сечениях (длина фиксирована) по времени (рис. 106):

Рис. 106. Изменение концентрации по времени

10. Представим распределение концентрации в конкретные моменты времени в сечениях (время фиксировано) по длине (рис. 107):

Рис. 107. Изменение концентрации по длине

11. Проведем анализ полученных результатов с точки зрения физического смысла.

Рассмотрим процесс изменения концентрации во времени в нескольких выбранных сечениях:

- на одной границе (x =0) концентрация постоянна, что соответствует первому граничному условию;

- на другой границе (x = L) градиент концентраций отсутствует, т. к. значения рассчитанных концентраций в двух последних сечениях (при x = L и x = Ldx) равны, что соответствует второму граничному условию;

- во всех сечениях происходит увеличение концентрации со временем (рис. 106), т. к. происходит поступление вещества внутрь объекта через его границу благодаря диффузии, причем в сечениях, близких к границе x = L, концентрация увеличивается значительно позже, чем в сечениях, близких к границе x =0.

Рассмотрим процесс изменения концентрации по длине в определенные моменты времени:

- в начальный момент времени (t =0) концентрация в объекте равна нулю во всех сечениях, за исключением границы x =0, что соответствует начальному условию;

- в любой из рассматриваемых моментов времени (рис. 107) концентрация на границе x =0 превышает концентрацию на границе x = L, но чем больше проходит времени, тем меньше становится разница концентраций, что говорит о постепенном проникновении вещества внутрь объекта.

Таким образом, проведенный анализ результатов, представленных в виде таблиц и графиков, показывает, что результаты соответствуют физическому смыслу задачи.







Дата добавления: 2014-11-12; просмотров: 848. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия