Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условия устойчивости явной разностной схемы





Для того чтобы решение по явной разностной схеме было устойчиво, необходимо выбирать интервалы дискретизации из следующего условия:

.

Конечно-разностная схема называется устойчивой, если погрешности, допущенные в процессе вычислений, затухают или остаются малыми при увеличении номера текущего слоя. Рассмотрим условия устойчивости явной разностной системы на примере уравнения диффузии:

.

Будем искать решение в следующем виде.

где А – const, f = – w 2, .

Отметим, что eiwx =cos(wx)+i× sin(wx), т. е. физически решением уравнения являются функции, которые представляют собой волны, графиком которых являются кривые (гармоники), затухающие при t ®¥.

Рассмотрим конечно-разностные уравнения, аппроксимирующие исходное дифференциальное уравнение.

.

Очевидно, что затухание гармоник во времени должно иметь место и для разностного уравнения.

Решение данного уравнения будем искать в виде:

,

где: tn =(n -1)D t,

xk =(k -1)D x.

Если положить

, то

.

Следовательно, при происходит затухание гармоники во времени, т. е. процесс решения устойчив. Если ê S ê > 1, то происходит потеря устойчивости решения. Для конечно-разностного уравнения, подставив формулу предполагаемого решения, получим:

Разделим левую и правую части уравнения на:

G = AS n-1 e iw(k-1)Dx, получим:

.

Рассмотрим

следовательно,

,

.

Для устойчивости вычислительной схемы достаточно потребовать, чтобы ê S ê £ 1, т. е.

Правое неравенство выполняется всегда.

.

 

Рассмотрим случай, когда sin принимает максимально возможное значение – 1:

Для получения устойчивого решения уравнения, сначала задаются одним из параметров (например, величиной ) и затем, исходя из полученного условия определяется величина другого значения Dt.







Дата добавления: 2014-11-12; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия