Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Значения энергии U и числа частиц N для различных состояний системы бозонов





N U
   
  E
  2 E
  3 E
…. ….

Для всех приложений величина , так как иначе число бозонов в системе нельзя было бы считать неограниченным из-за расходимости суммы, что не соответствовало бы свойствам, характерным для бозонов. Среднее значение заселенности найдем по правилу нахождения средних по ансамблю

Для вычисления суммы в числителе последнего выражения продифференцируем сумму Гиббса по :

Отсюда легко находим

Поскольку для суммы Гиббса аналитическое выражение нами было найдено, то

Для средней заселенности, таким образом, имеем

Полученное выражение носит название распределения Бозе–Эйнштейна. От полученного ранее распределения Ферми–Дирака эта формула отличается знаком перед единицей в знаменателе. График зависимости < N> от энергии бозона E построен на рис. 15.

Итак, мы получили формулы, для подсчета средней заселенности состояния с энергией для частиц, обладающих различными квантовыми свойствами (бозоны и фермионы). Рассмотрим другую задачу. Подсчитаем количество частиц, имеющих импульс, принадлежащий малому интервалу вблизи значения , , . Ранее в разделе 1.3 мы с помощью уравнении Шредингера рассмотрели одномерное движение частицы в потенциальной яме шириной . При этом был вычислен энергетический спектр частицы

Реальное движение частиц является трехмерным. Нетрудно на основе решения уравнения Шредингера показать, что если частица заперта в трехмерной кубической области с длиной ребра l, энергетический спектр рассчитывается по той же формуле, с той разницей, что

,

где , , — независимые квантовые целые числа, каждое из которых меняется как 1, 2, …∞. Выражение для проекций импульса на оси координат следуют из формулы :

,

,

,

Нетрудно видеть, что минимально возможная величина, на которую может изменяться проекция импульса на ось координат будет

Поэтому минимальный размер квантовой ячейки в пространстве импульсов составит

а количество ячеек в пространстве импульсов (состояний), приходящихся на единичный интервал изменения импульса, составит

Примем к сведению, что сама по себе частица может находиться в различных внутренних квантовых состояния, например, электрон имеет два внутренних собственных квантовых состояния со значением проекции спина ½ и –½. Если обозначить число внутренних квантовых состояний частицы как – внутренний фактор вырождения, то формулу для числа квантовых состояний, приходящихся на единичный интервал изменения импульса, следует переписать как

В этом разделе мы увидели, что не все состояния заселены частицами одинаково. Степень заселенности состояния вычисляется с помощью полученных выше функций распределения. Поэтому, составляя выражение для полного числа частиц, обладающих импульсом из малого интервала его изменения, мы должны умножить количество квантовых состояний, приходящихся на этот интервал, и на заселенность этих состояний. Для определения малой величины изменения импульса заметим, что в системах содержащих большое количество частиц, несмотря на то, что все характеристики движения частиц, включая импульс, образуют дискретный спектр значений, квант дискретизации весьма мал, по сравнению с самим значением того же импульса. Это позволяет пренебречь дискретностью и пользоваться математическими формулами и методами для непрерывных величин. Поэтому малый интервал изменения импульса можно записать в форме . Теперь запишем выражения для числа частиц, имеющих импульс из указанного малого интервала изменения

где знак «+» берется для фермионов, а «–» — для бозонов. Если в последней формуле перейти от полного числа частиц к расчету их в единице объема, то поделив (34) на объем , получим

Здесь величина — число частиц, приходящееся на единицу объема.







Дата добавления: 2014-11-12; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия