ТЕМА 9 ГАЛОГЕНОПРОИЗВОДНЫЕ
Соединения, имеющие структуру углеводородов, в которых один или несколько водородных атомов замещены на атом галогена, называются галогенопроизводными. При изучении химических свойств галогенопроизводных углеводородов (R− Г) прежде всего следует обратить внимание на то, что σ –связь между атомами углерода и галогена полярна, т. е. электронная плотность пары, образовавшая ковалентную связь, смещена в сторону более электроотрицательного атома галогена
δ + δ - – С → Сℓ.
Этот эффект смещения электронов называется индукционным эффектом. Связь С-галоген в силу ее высокой полярности реакционноспособна и легко разрывается при атаке углерода заряженной отрицательно (нуклеофильной) частицей. Поэтому такой тип замещения называется нуклеофильным. Галогенопроизводные способны к весьма многочисленным и разнообразным превращениям, ведущим к образованию различных других групп органических соединений. Мы уже ознакомились со следующими реакциями: 1.Получение предельных углеводородов из галогенопроизводныхпутем отнятия галогенов металлическим натрием (реакция Вюрца). 2. Получение из галогенопроизводных олефинов при отнятии галогеноводорода. 3. Действие нитрата серебра.Атом галогена в галогенопроизводных не находится в диссоциированном состоянии, не образует ионов, и поэтому эти вещества при обычных условиях, как правило, не дают осадка галогенидов серебра. Тем не менее атомы галогенов обладают некоторой подвижностью, причем неодинаковой для различных галогенов: хлор в галогенопроизводных связан наиболее прочно, а йод отличается наибольшей подвижностью. Большая подвижность йода связана с его большим атомным радиусом и большим дипольным моментом, поскольку μ = ql. В соответствии с этим иодистые алкилы, например CH3I и C2H5I, хотя и медленно, но реагируют с AgNO3. В спиртовых растворах реакции галогеналкилов, например CH3I и C2H5I с AgNO3, проходят лучше и до конца, в результате чего образуется эфиры азотной кислоты:
C2H5I + AgОNO2 → C2H5ОNO2 + AgI. этиловый эфир азотной кислоты 4. Обмен галогена на гидроксил с образованием спирта при действии воды происходит обычно медленно, иногда практически не идет вследствие обратимости процесса:
C2H5Cl + НОН C2H5ОН + HCl. этиловый спирт
Энергичнее действуют щелочи, которые связывают образующуюся кислоту и сами взаимодействуют с галогенопроизводными:
C2H5Cl + NaОН → C2H5ОН + NaCl.
Замена галогена гидроксилом протекает по ионному механизму, являясь реакцией нуклеофильного замещения, которое схематически можно представить так:
R: Cl +: OH- → R: OH +: Cl-.
Во многих случаях (при образовании первичных спиртов) реакция протекает через промежуточное или «переходное состояние»: гидроксильный ион присоединяется, когда связь с галогеном еще не полностью разорвана: H H H Brδ - – Cδ + + OH → Brδ - … Cδ + … OHδ - → Br + HC – OH. H H H H H переходное состояние 5. Замещение галогена при взаимодействии с нуклеофильными реагентами. Воздействие нуклеофильных реагентов (анионов и нейтральных молекул с неподеленными парами электронов) на галогенопроизводные углеводородов ведет к замещению атома галогена:
δ + δ - RCH2 – X: +: Nu: -M+ → RCH2 – Nu: +: X: -M+; δ + δ - RCH2 – X: +: NuH → [RCH2 – Nu+H]: X: - ↔ RCH2 – Nu: + HX:.
Эту реакцию называют реакцией нуклеофильного замещения у насыщенного углеродного атома и обозначают символом SN (S – от англ. Substituon – замещение). Необходимо заметить, что параллельно могут протекать реакции отщепления. Механизм этой реакции изучался в течение нескольких десятилетий. Изучение скорости реакции SN в зависимости от концентрации нуклеофильного реагента и строения галогенуглеводорода дало интересные результаты. Оказалось, что существуют реакции SN, скорость которых не зависит от концентрации нулеофильного реагента (реакции первого порядка). В то же время скорость многих других реакций SN зависит от концентрации как нуклеофильного реагента, так и галогенопроизводного (реакции второго порядка). Так, было обнаружено, что возможны по меньшей мере два механизма SN. Реакции первого порядка протекают в две стадии. Первая − ионизация галогенопроизводного – является медленной стадией. В результате ионизации могут образоваться ионные пары (тесные или сольваторазделенные): δ + δ - RCH2 – X: RCH2: X: -.
Вторая стадия – взаимодействие с нуклеофильным реагентом протекает быстро:
RCH2: X: +: Nu: → RCH2 – Nu: +: X:.
Общую скорость реакции SN лимитирует медленная стадия — ио-низация. Поэтому скорость реакции не зависит от концентрации и типа нуклеофильного реагента. Такие реакции называют мономолекулярными и обозначают символом SN1. Реакция второго порядка является более общим случаем. Оба компонента – галогенопроизводное и нуклеофильный реагент ‒ вступают в реакцию одновременно. Скорость реакции определяется как концентрацией и типом нуклеофильного реагента, так и концентрацией галогенопроизводного. Такие реакции называют бимолекулярными и обозначают символом SN2. Важно помнить, что в реакциях SN2 происходит обращение конфигурации у атома углерода. S-конфигурация переходит в R-конфи-гурацию и наоборот. Например, из R-2-бромбутана при действии щелочи получается S-бутанол-2, а из S-2-бромбутана – R-бутанол-2. Реакция SN2 принадлежит к стереоспецифическим реакциям. Реакцию называют стереоспецифической, если исходные вещества, отличающиеся только стереоизомерией, превращаются в стереоизомерно разные продукты. В данной теме рассмотрен механизм реакций нуклеофильного замещения и химические свойства галогенопроизводных. [ 1, с. 56− 57; 3, с. 95− 112; 5, с. 101− 109].
|