Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричный метод решения систем





Рассмотрим систему n линейных уравнений с n неизвестными

(21)

Основная матрица системы .

Обозначим , . Пусть , то есть матрица А невырожденная. Тогда систему (21) можно представить в виде уравнения

(22)

которое называется матричным уравнением. Решим матричное уравнение. Умножим обе части уравнения (22) слева на . Получим , а так как , , тогда

(23)

Равенство (23) называется решением матричного уравнения (22).

Таким образом, чтобы решить систему уравнений (21) матричным методом, где , надо найти матрицу, обратную матрице А, и умножить ее на матрицу-столбец В, состоящую из свободных членов системы (21).

Пример 34. Решить систему уравнений матричным методом

Решение. Выпишем основную матрицу системы

Проверим, является ли матрица А невырожденной:

значит матрица является невырожденной, поэтому обратная матрица к матрице существует и данную систему уравнений можно решить матричным методом.

Найдем алгебраические дополнения элементов матрицы :

Составим матрицу , присоединенную к матрице А:

По формуле (15) получим матрицу , обратную к матрице А:

Найдем решение данной системы уравнений по формуле (23)

то есть

Пример 35. Матричным методом решить систему уравнений

Решение. Запишем основную матрицу системы :

и вычислим определитель этой матрицы

В полученном определителе элементы первой строки пропорциональны соответствующим элементам второй строки, тогда по свойству 6 определителей

Матрица является вырожденной, а значит решить матричным методом данную систему невозможно.







Дата добавления: 2015-10-19; просмотров: 619. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия