Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричный метод решения систем





Рассмотрим систему n линейных уравнений с n неизвестными

(21)

Основная матрица системы .

Обозначим , . Пусть , то есть матрица А невырожденная. Тогда систему (21) можно представить в виде уравнения

(22)

которое называется матричным уравнением. Решим матричное уравнение. Умножим обе части уравнения (22) слева на . Получим , а так как , , тогда

(23)

Равенство (23) называется решением матричного уравнения (22).

Таким образом, чтобы решить систему уравнений (21) матричным методом, где , надо найти матрицу, обратную матрице А, и умножить ее на матрицу-столбец В, состоящую из свободных членов системы (21).

Пример 34. Решить систему уравнений матричным методом

Решение. Выпишем основную матрицу системы

Проверим, является ли матрица А невырожденной:

значит матрица является невырожденной, поэтому обратная матрица к матрице существует и данную систему уравнений можно решить матричным методом.

Найдем алгебраические дополнения элементов матрицы :

Составим матрицу , присоединенную к матрице А:

По формуле (15) получим матрицу , обратную к матрице А:

Найдем решение данной системы уравнений по формуле (23)

то есть

Пример 35. Матричным методом решить систему уравнений

Решение. Запишем основную матрицу системы :

и вычислим определитель этой матрицы

В полученном определителе элементы первой строки пропорциональны соответствующим элементам второй строки, тогда по свойству 6 определителей

Матрица является вырожденной, а значит решить матричным методом данную систему невозможно.







Дата добавления: 2015-10-19; просмотров: 619. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия