Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные системы уравнений





Рассмотрим однородную систему линейных уравнений

(26)

Однородная система всегда совместна (), она имеет нулевое (тривиальное) решение .

Для того, чтобы однородная система линейных уравнений имела ненулевые решения необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, то есть r<n.

Если число уравнений m системы совпадают с числом неизвестных n, то есть , основная матрица системы является квадратной, в этом случае условие r<n означает, что определитель основной матрицы системы

Пример 39. Решить систему уравнений

Решение. Составим основную матрицу системы

.

Элементы первой строки умножим на (-2) и прибавим к элементам второй строки.

~ .

Получили матрицу ступенчатого вида, в которой две ненулевые строки, поэтому ранг матрицы , а значит и расширенной матрицы равен 2, то есть

Число неизвестных в системе уравнений равно 3, r<n, поэтому данная система имеет ненулевые решения.

Для составления системы, равносильной данной, воспользуемся преобразованной матрицей

Из второго уравнения выразим через , при этом будет является свободной переменной: .

Полученную правую часть равенства подставим в первое уравнение и выразим через :

Пусть , тогда общее решение системы можно записать в виде матрицы-столбца

(27)

Пример 40. Решить систему уравнений

Решение. Выпишем основную матрицу системы

.

Элементы первой строки умножим на (-2) и прибавим к соответствующим элементам второй строки умноженным на 3:

~ .

Элементы первой строки умножим на (-1) и прибавим к элементам третьей строки

~ ~ .

Элементы второй строки умножим на (-2), элементы третьей строки на 11 и полученные строки сложим

~ ~ ~ .

Получили три ненулевые строки, значит ранг матрицы равен 3, число неизвестных в системе уравнений тоже равно 3, то есть , значит данная система уравнений имеет единственное решение – нулевое, то есть

.

Пример 41. Решить систему уравнений

Решение. Выпишем основную матрицу системы

и найдем ранг этой матрицы.

Элементы первой строки умножим на (-3) и прибавим к элементам второй и четвертой строк, затем элементы первой строки умножим на

(-4) и прибавим к третьей строке:

~ .

Элементы второй строки умножим на и прибавим к элементам третьей строки, затем элементы второй строки умножим на и прибавим к элементам четвертой строки:

~ .

В преобразованной матрице ступенчатого вида получилось две ненулевые строки, поэтому ранг матрицы равен двум, то есть , а число неизвестных в системе уравнений равно 4 (). Получили, что , поэтому данная система уравнений имеет ненулевые решения. Укороченная система имеет вид:

Выразим и через и : или

Неизвестные и - базисные, а и - свободные. Полагая , получим общее решение системы, записанное в виде матрицы-столбца (1.27)

(28)

Назовем фундаментальной системой решений систему матриц-столбцов, полученную из общего решения при условии, что свободным неизвестным дают последовательно значения

Матрицы-столбцы, то есть фундаментальную систему решений обозначают . Общее решение будет представлено в виде

(29)

В примере 41 найдем фундаментальную систему решений и выразим с ее помощью общее решение этой системы.

Из общего решения (28) системы найдем :

, . (30)

С использованием фундаментальной системы (30) общее решение (28) может быть записано в виде (29)







Дата добавления: 2015-10-19; просмотров: 631. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия