Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обратная матрица





Пусть А -квадратная матрица n- го порядка

.

Определение. Матрица

составленная из алгебраических дополнений к элементам матрицы А, называется присоединенной к матрице А.

Алгебраические дополнения к элементам квадратной матрицы находятся так же, как к элементам ее определителя. В присоединенной матрице алгебраические дополнения элементов строки стоят в столбце с таким же номером.

Пример 23. Дана матрица

Найти матрицу, присоединенную к матрице А.

Решение. Найдем алгебраические дополнения к элементам матрицы А:

Составим матрицу , присоединенную к матрице А

.

Определение. Матрица называется обратной матрице А, если выполняется условие

, (14)

где – единичная матрица того же порядка, что и матрица . Матрица имеет те же размеры, что и матрица .

Теорема. Для того, чтобы матрица имела обратную матрицу, необходимо и достаточно, чтобы то есть чтобы матрица была невырожденной.

Обратная матрица находится по формуле:

(15)

для матрицы А третьего порядка.

Свойства обратной матрицы:

1.

2.

3.

Пример 24. Найти , если

Решение. Проверим, является ли данная матрица невырожденной. Вычислим определитель, соответствующий матрице :

следовательно, матрица невырожденная и для нее существует обратная матрица .

Найдем алгебраические дополнения элементов матрицы :

Составим матрицу по формуле (15)

Проверка:

Следовательно, обратная матрица найдена верно.

Пример 25. Показать, что матрица является обратной для , если

Решение. Найдем произведение матриц и :

Следовательно, матрица является обратной для матрицы .

Пример 26. Найти матрицу, обратную для матрицы

Решение. Найдем определитель матрицы :

Матрица – вырожденная, значит обратная для нее матрица не существует.

 

Пример 27. Найти матрицу, обратную для данной матрицы

Решение. Найдем определитель матрицы :

значит матрица невырожденнаяи для нее существует обратная матрица .

 

Вычислим алгебраические дополнения элементов матрицы :

Используя формулу (15), составим матрицу :

.

Проверка:

Значит обратная матрица найдена верно.







Дата добавления: 2015-10-19; просмотров: 1923. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия