Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определители третьего порядка





Определение. Определителем третьего порядка, соответствующим квадратной таблице элементов

,

называется число, определяемое равенством

(2)

Пример 4. Вычислить определитель

.

Решение. По определению получим:

Если в формуле (2) раскрыть определители второго порядка и собрать слагаемые с одинаковыми знаками, то получим:

(3)

Этот способ вычисления определителя третьего порядка называется правилом треугольника.

Первые три слагаемых для вычисления определителя есть сумма произведений элементов главной диагонали и элементов, расположенных в вершинах треугольников, как они показаны линиями на первом рисунке; оставшиеся слагаемые есть сумма произведений, взятых со знаком минус, элементов побочной диагонали и элементов, расположенных в вершинах треугольников, как они показаны линиями на втором рисунке.

Пример 5. Вычислить определитель по правилу треугольника.

Решение. Перемножим элементы главной диагонали определителя , затем – элементы, лежащие на параллелях к этой диагонали, и элементы из противоположного угла определителя согласно правилу треугольника , . Элементы, входящие в формулу (3) со знаком минус, вычисляем аналогично, но относительно побочной диагонали: , , .

Таким образом

Определение. Определитель, в котором под главной диагональю (над главной диагональю) стоят нули, называется определителем треугольного вида.

Определитель треугольного вида равен произведению элементов главной диагонали.

Пример 6. Вычислить определитель .

Решение. По условию дан определитель треугольного вида, т.к. под главной диагональю этого определителя стоят нули, значит значение данного определителя равно произведению элементов главной диагонали, то есть .

Определение. Минором элемента определителя третьего порядка называется определитель второго порядка, полученный из данного определителя путем вычеркивания строки и столба, на пересечении которых стоит данный элемент.

Минор элемента , стоящего на пересечении i -ой строки и j -го столбца определителя, обозначают .

Например, для определителя

миноры , .

Определение. Алгебраическим дополнением данного элемента определителя 3-го порядка называется минор этого элемента, умноженный на , где k равно сумме номера строки и номера столбца, на пересечении которых находится этот элемент.

Алгебраическое дополнение элемента обозначают . Согласно определению .

Для определителя третьего порядка знак, который при этом приписывается минору соответствующего определителя, определяется следующей таблицей: .

Из определения определителя третьего порядка следует, что

.

Верна общая теорема разложения: определитель третьего порядка равен сумме произведений элементов любой его строки или столбца на соответствующие этим элементам алгебраические дополнения.

Таким образом, имеют место шесть разложений:

(5)

Отметим, что сумма произведений элементов какого-либо ряда (строки или столбца) на алгебраические дополнения элементов параллельного ряда равна нулю.

Пример 7. Вычислить определитель ,

разлагая его по элементам третьего столбца.

Решение. Согласно теореме разложения имеем:







Дата добавления: 2015-10-19; просмотров: 891. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия