Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действия над матрицами





Определение. Суммой двух матриц и одинаковых размеров называется матрица того же размера такая, что

(10)

Пример 14. Найти сумму матриц и , если

Решение.

Для любых матриц и одинакового размера справедливы следующие свойства:

1.

2.

3. .

Определение. Произведением матрицы на число называется матрица такая, что

(11)

Пример 15. , . Найти .

Решение.

Матрица называется противоположной матрице .

Для любых матриц и одинакового размера и любых действительных чисел справедливы следующие свойства:

1.

2.

3.

4.

5. .

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Оределение. Произведением матрицы на матрицу называется матрица такая, что

, (12)

где , .

Формулу (12) для нахождения элемента полезно помнить в виде правила:

в матрице выделяем - ю строку, в матрице выделяем -й столбец.

, .

Тогда для того, чтобы получить элемент матрицы , расположенный на пересечении i-й строки и k -го столбца, надо каждый элемент i -й строки матрицы умножить на соответствующий элемент k -го столбца матрицы и все полученные произведения сложить.

Если матрицы и квадратные одного размера, то произведения и всегда существуют.

Пример 16. Найти произведение матриц и , если .

Решение. Для получения первой строки новой матрицы фиксируем в матрице первую строку (2 0), а в матрице выделяем поочередно первый, второй и третий столбцы: .

Элемент находим как сумму произведений элементов первой строки матрицы на соответствующие элементы первого столбца матрицы по правилу: «произведение первого элемента строки на первый элемент столбца плюс произведение второго элемента строки на второй элемент столбца».

Пользуясь этим правилом, находим:

Для вычисления элементов , , фиксируем вторую строку матрицы (-1 3) и умножаем её поочередно на первый, второй и третий столбцы матрицы :

Пример 17. Даны матрицы

Найти и .

Решение. Произведение не определено, так как число столбцов матрицы (3)не совпадает с числом строк матрицы (2). Произведение определено, так как число столбцов матрицы (2) совпадает с числом строк матрицы (2).

Используя правило, рассмотренное в предыдущем примере, найдем произведение :

Матрицы и называются перестановочными, если .

Умножение матриц обладает следующими свойствами:

если указанные суммы и произведения матриц имеют смысл.

6. Если квадратная матрица n-го порядка, Е -единичная матрица того же порядка, то .

7. Для операции транспонирования верны следующие равенства:

Пример 18. Даны матрицы

Проверить справедливость равенства 5.

Решение. Найдем произведение :

Таким образом,

Пример 19. Даны матрицы

Показать, что

Решение. Найдем произведение матриц АВ:

Найдем

Получим

Пример 20. Даны две матрицы

Найти АВ.

Решение.

Пример 21. Найти значение матричного многочлена если , Е - единичная матрица третьего порядка.

Решение. . Найдем :

= ,

Пример 22. Найти произведение матриц , если оно определено, где

Решение. Рассмотрим матрицы и В. Размер матрицы , размер матрицы . Так как число столбцов матрицы (3) равно числу строк матрицы (3), то произведение определено, в результате получим матрицу размера .

Число столбцов матрицы (1) совпадает с числом строк матрицы (1), таким образом, произведение определено, получаемая матрица будет размера .

Найдем произведение :

Найдем произведение :







Дата добавления: 2015-10-19; просмотров: 672. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия