Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. В отсутствие зарядов и токов, но при наличии переменных электрических и магнитных полей уравнения Максвелла принимают вид





В отсутствие зарядов и токов, но при наличии переменных электрических и магнитных полей уравнения Максвелла принимают вид

1) , 2) ,

2) , 3) , (4.1)

а поле, описываемое этими уравнениями, называется свободным электромагнитным полем.

Система четырех дифференциальных уравнений первого порядка (4.1) может быть приведена к системе двух дифференциальных уравнений второго порядка, имеющих вид волновых уравнений:

, (4.3)

. (4.4)

Следовательно, свободное электромагнитное поле может существовать лишь в форме электромагнитной волны, распространяющей в однородной и изотропной среде со скоростью

. (4.5)

В вакууме (ε; = 1, μ; = 1) скорость распространения электромагнитных волн равна скорости света

(4.6)

В общем случае волна – это возбуждение, распространяющееся в среде с постоянной скоростью, определяемой свойствами этой среды. Геометрическое место точек, значение возмущения в которых одинаково, называется волновой поверхностью (поверхностью равных фаз, фронтом волны). По форме фронта вводятся две основные модели волны - плоская и сферическая: фронтом плоской волны является плоскость, а фронтом сферической – сфера. Плоская электромагнитная волна в вакууме может быть представлена в виде двух составляющих:

, (4.7)

где - единичный вектор в направлении распространения волны.

Уравнение сферической электромагнитной волны, распространяющейся в вакууме, имеет общий вид:

. (4.8)

В уравнениях (4.7)и (4.8) с – фазовая скорость волны, совпадающая со скоростью света.

Векторы , и в плоской волне взаимно перпендикулярны и образуют правую тройку векторов. Для электромагнитной волны в вакууме

. (4.9)

Волны, в которых электрическая и магнитная составляющие изменяются по гармоническому закону называются монохроматическими. Если при этом направления, вдоль которых происходят колебания векторов и , остаются постоянными, то такие волны называются гармоническими линейно поляризованными. Уравнение плоской монохроматической линейно поляризованной электромагнитной волны можно записать в комплексной форме, удобной для выполнения операций дифференцирования и интегрирования:

, (4.10а)

. (4.10б)

Здесь и - векторы поляризации, Е0 и B0 – амплитуды колебаний напряженности электрического и индукции магнитного полей, w - циклическая частота колебаний, - волновой вектор, причем ,где - длина волны. При этом следует помнить, что физический смысл имеют лишь действительные части (4.10а) и (4.10б).

В общем случае возмущения произвольной формы электромагнитная волна может быть представлена суперпозицией плоских линейно поляризованных монохроматических волн.

При распространении электромагнитной волны в непроводящей среде с диэлектрической проницаемостью e и магнитной проницаемостью mв уравнениях (4.7) – (4.10) следует заменить с на , а между величинами Е, В, D и Н существует простая связь:

. (4.11)

В плоской электромагнитной волне плотность энергии электрической и магнитной составляющих равны. Поэтому

. (4.12)

Плотность потока электромагнитной энергии (интенсивность волны) определяется следующими выражениеми:

. (4.13)

В проводящей среде электромагнитные волны затухают, что отражается введением комплексного волнового вектора k* = k¢ + ik¢¢; в (4.10). Комплексность волнового вектора связана с комплексностью диэлектрической проницаемости, наличие мнимой части которой обусловлено электропроводностью среды:

. (4.14)

Действительная и мнимая части k * связаны с материальными константами среды и зависят от частоты:

. (4.15)

Рассмотренные решения уравнений Максвелла (4.1) представляют собой решения системы однородных волновых уравнений. При наличии переменных зарядов и токов ставится задача нахождения частных решений полной системы уравнений Максвелла

,

, (4.16)

удовлетворяющих заданному распределению зарядов и токов.

С использованием калибровки Лоренца для скалярного и векторного потенциалов

уравнения (4.16) преобразуются в неоднородные волновые уравнения относительно этих потенциалов: (4.17а)

. (4.17б)

Частными решениями этих уравнений являются запаздывающие потенциалы (для простоты записей принимаем e = 1 и m = 1):

, (4.18)

. (4.19)

Здесь, по-прежнему, , а R/c – время, в течение которого распространяющееся со скоростью с поле достигает точки наблюдения. Таким образом, поле в точке наблюдения в момент времени t определяется значениями зарядов и токов в различные предшествующие моменты времени.

Если полный заряд системы зарядов равен нулю, а электрический дипольный момент отличен от нуля, то на больших расстояниях в волновой зоне (r >>l >> l~ r¢;; l - линейный размер системы)

, (4.20)

где точка над означает дифференцирование по времени, а штрих подразумевает, что значение дипольного момента берется в момент времени (t - t). Задержка t = r/c представляет собой время, в течение которого поле распространяется от системы зарядов как целого до точки наблюдения. Из (4.20) видно, что электромагнитное поле электрического диполя в волновой зоне представляет собой сферическую волну. Поэтому величины j и в (4.20) называются радиационными потенциалами.

С радиационными потенциалами связаны напряженность электрического и индукция магнитного поля излучения диполя:

. (4.21)

Т.к. сферическую волну на больших расстояниях от источника можно рассматривать как плоскую, то плотность потока энергии дипольного излучения, равная , может быть преобразована к виду (см. рис.4.1):

(4.22)

Полная энергия, теряемая диполем в единицу времени (мощность излучения) может быть получена интегрированием по полному телесному углу, т.е. всем значениям углов q и f:

. (4.23)

Если электрический дипольный момент системы зарядов равен нулю, но отличен от нуля магнитный момент, то поле излучения в волновой зоне определяется этим моментом и описывается выражениями:

. (4.24)

 







Дата добавления: 2015-10-19; просмотров: 625. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия