Обратная задача.
Довольно часто приходится решать обратную задачу, т. е. по напряжениям на произвольных площадках sa, ta, sb, tb определять величину и направление главных напряжений. Проще эта задача решается графически, т. е. с помощью круга Мора (рис. 4.10). Рассмотрим порядок его построения. Прямоугольную систему координат s, t выберем так, чтобы ось абсцисс была параллельна большему из нормальных напряжений (пусть sa > sb). На оси s отложим в выбранном масштабе отрезки ОКa, ОКb, численно равные sa и sb. Из точек Кa и Кb проведем перпендикуляры КaDa, КbDb, которые численно равны соответственноta и τβ (КaDa = ta, КbDb = τβ = - ta). На отрезке DaDb, как на диаметре, построим круг с центром в точке С. Крайнюю правую точку пересечения круга с осью s обозначим буквой А, крайнюю левую – буквой В. Касательные напряжения в этих точках равны нулю, следовательно, ОА=s1, ОВ=s2 – главные напряжения (.в соответствии с прямой задачей).
Рис. 4.10
параллельна большему из нормальных напряжений (пусть sa > sb). На оси s отложим в выбранном масштабе отрезки ОКa, ОКb, численно равные sa и sb. Из точек Кa и Кb проведем перпендикуляры КaDa, КbDb, которые численно равны соответственноta и τβ (КaDa = ta, КbDb = τβ = - ta). На отрезке DaDb, как на диаметре, построим круг с центром в точке С. Крайнюю правую точку пересечения круга с осью s обозначим буквой А, крайнюю левую – буквой В. Касательные напряжения в этих точках равны нулю, следовательно, ОА=s1, ОВ=s2 – главные напряжения (.в соответствии с прямой задачей). Из рис.6.10 определим радиус круга R и величину отрезка ОС (4.12) (4.13) C учетом выражений (4.12), (4.13) получим следующие формулы для главных напряжений ОА= σI = ОС + R = + (4.14)
ОВ = σII = ОС – R = - (4.15) Или (4.16) Для определения направления главного напряжения s1 проведем луч через крайнюю левую точку круга В и точку Da¢, которая симметрична точке Da относительно оси s. Направление луча ВDa¢ совпадает с направлением s1, направление s2 перпендикулярно ему. Угол a0 определится из треугольника ВКaDa¢ (рис. 6.10): (4.17) Угол a0 считается положительным, если его откладывают от оси s против часовой стрелки. 4.7 Напряжения на произвольной площадке при объемном напряженном состоянии В элементарном параллелепипеде, по граням которого действуют все три главных напряжения, рассмотрим произвольную площадку a, нормаль к которой составляет с координатными осями 1,2,3 углы α1 α2 α3.(рис. 4. 11). На этой площадке будет действовать полное напряжение рα, составляющее с нормалью n угол α. Определим его проекции на нормаль к площадке - σα и на саму площадку – τα.
где - напряжение на рассматриваемой площадке, вызванное действием , а , - соответственно от напряжений и .Для вычисления этих величин воспользуемся формулой для линейного напряжённого состояния: = , = , = .
С учетом этих значений нормальные напряжения на произвольной площадке определятся равенством (4.18) Для вывода формулы касательных напряжений τα следует рассмотреть его векторную величину . Так как , то . Опуская выводы, которые следуют из уравнений равновесия рассматриваемой трёх- гранной пирамиды (рис. 3.11), запишем формулу в окончательном виде для вектора полного напряжения на площадке nα: . С учётом этого выражения (4.19) В качестве примера рассмотрим напряжения на площадке, равнонаклонённой ко всем главным площадкам. Такая площадка называется октаэдрической, а напряжения, действующие на этой площадке, называются октаэдрическими. Так как для такой площадки , а учитывая, что всегда , то . Следовательно (4.20) (4.21) Так же, как и в случае плоского напряженного состояния, при объемном напряженном состоянии сумма нормальных напряжений по трем взаимно перпендикулярным площадкам, проходящим через рассматриваемую точку, есть величина постоянная.
|