Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обобщенный закон Гука





 

Рассматривая вопросы прочности при объемном и плоском напряженных состояниях, необходимо в соответствии с основными гипотезами считать, что материал изотропный, следует закону Гука, а деформации малы.

Изучая центральное растяжение, сжатие, было установлено, что относительные продольная и поперечная деформации определяются выражениями

, (4.12)

Эти равенства выражают закон Гука при простом растяжении или сжатии, т.е. при линейном напряженном состоянии (рис. 4.14).

Рассмотрим зависимость между напряжениями и деформациями в случае объемного напряженного состояния.

Рис.4.14
Применяя принцип суперпозиции, объемное напряженное состояние изобразим как сумму трех линейных напряженных состояний (рис. 4.15). В этом случае деформацию по направлению первого главного напряжения s1 можно записать , где , , - относительные удлинения в

 
 

направлении s1, вызванные соответственно действием только

Рис. 4.15

 

напряжениями s1, s2, s3.

Поскольку является для напряжения s1 продольной деформацией, а , - поперечными деформациями, то из формул (4.12) следует:

, , . (4.13)

Складывая эти величины, получим .

Аналогично получаются выражения для двух других главных удлинений. В результате

(4.14)

.

Эти формулы носят название обобщенного закона Гука для изотропного тела, т. е. определяют зависимость между линейными деформациями и главными напряжениями в общем случае объемного напряженного состояния. Из этих формул легко получить закон Гука для плоского напряженного состояния. Например, :

Выражения (4.14) справедливы не только для главных деформаций, но и для относительных деформаций по любым трем взаимно перпендикулярным направлениям.

При выводе аналитического выражения обобщенного закона Гука в этом случае будем

исходить из условия, что угловые деформации не зависят от нормальных напряжения, а ли-нейные деформации не зависят от касательных напряжений. В этом случае относительное удлинение по направлению оси х будет обусловлено напряжением σх и равно . Напряжениям в этом направлении будут соответствовать удлинения и .По аналогии получим такие же выражения для и .

Таким образом,

 

(4.15)

.

Угловые деформации определяются соответствующими касательными напряжениями

(4.16)

Совокупность деформаций, возникающих по различн ым направлениям и в различных плоскостях, проходящих через данную точку, называется деформированным состоянием в точке.

Наряду с линейной и угловой деформацией в сопротивлении материалов приходится рассматривать иногда и объёмную деформацию, т.е., относительное изменение объема в точке. Линейные размеры ребер элементарного параллелепипеда в результате деформации меняются и становятся равными . Абсолютное приращение объёма определится разностью

- .

Раскрывая скобки и пренебрегая произведениями линейных деформаций, как величинами второго порядка малости, получим .

Относительное изменение объёма обозначается буквой е и определится из отношения

е .

Заменив деформации их выражениями по закону Гука, получим

e (4.17)

Это соотношение на ряду с формулами (4.14)-(4.16) относится к обобщенному закону Гука.

 

4.8 П отенциальная энергия деформации







Дата добавления: 2015-10-19; просмотров: 759. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия