Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон парности касательных напряжений. Главные площадки, главные напряжения.





 

Касательные напряжения связаны между собой определенной зависимостью, которая следует из условий равновесия параллелепипеда (рис. 4.2): Рассмотри первое уравнение равновесия: . Из него следует . Аналогично из уравнений получим , . Таким образом , , .

Эти соотношения носят название закона парности касательных напряжений: касательные напряжения по двум взаимно перпендикулярным площадкам равны по абсолютной величине и противоположны по знаку, т.е. касательные напряжения на двух взаимно перпендикулярных площадках направлены либо к линии пересечения этих площадок, либо от нее.

Таким образом, на гранях выделенного элемента имеем не девять, а только шесть независимых компонентов напряжений: sx, sy, sz, txy, tyz, tzx.

Площадки, на которых нет касательных напряжений, называются главными, а нормальные напряжения на этих площадках – главными напряжениями (рис 4.4).    
При изменении ориентации граней выделенного параллелепипеда меняются и напряжения, действующие на его гранях. При этом, как доказывается в теории упругости, можно провести такие три взаимно перпендикулярных площадки, на которых касательные напряжения будут отсутствовать.

 

 

Рис.4.4


Главные напряжения обозначаются s1, s2, s3, при расстановке индексов следует выполнять соотношение s1 ³ s2 ³ s3.

Это неравенство следует понимать в алгебраическом смысле. Пусть одно из главных напряжений равно нулю, другое растягивающее – 40 МПа, третье сжимающее – 140 МПа, тогда , , .

 







Дата добавления: 2015-10-19; просмотров: 946. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия