Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Точка приложения силы тяжести





Если в формулах координат центра параллельных сил модули сил F к заменим модулями сил тяжести Gh, то получим формулы координат центра тяжести тела:

Эти формулы используют лишь в тех случаях, когда требуется определить положение центра тяжести неоднородного тела или не­изменяемой системы тел из различных материалов. Обычно опреде­ляют положения центров тяжести однородных тел и тогда из фор­мул следуют три их разновидности.

 

  1. Если тело имеет вид пространственной фигуры, составленной из однородных тонких прутков (т. е. имеет вид решетки или карка­са), то сила тяжести любого прямолинейного или криволинейного участка фигуры

Gh = lhq,

где q — постоянная для всей фигуры сила тяжести единицы длины материала (интенсивность силы тяжести по длине материала фигуры). После подстановки в формулы вместо Gк его значения lhq постоянный множитель q в каждом слагаемом числителя и знаменателя вынесем за знак суммы (за скоб­ки) и сократим. В результате получим формулы координат центров тяжести фигур в виде решетки (каркаса):

где xk, yk, zк — координаты центров тяжести отдельных участков фигуры длиной lк.

 

  1. Если тело имеет вид фигуры, составленной из плоских или изогнутых тонких однородных пластин, то сила тяжести каждого участка такой фигуры

Gh=Akp,

где Ak — площадь участка, р — сила тяжести единицы площади фигуры (интенсивность силы тяже­сти по площади фигуры). Подставив в формулу вместо Gk его значение Ahq, получим формулы координат центра тяжести фигу­ры, составленной из площадей:

где xk, yk, zк — центры тяжести отдельных участков фигуры пло­щадью А.

 

  1. Аналогичные формулы получим и для тел, составленных из объемов, если в формулах заменим Gh = Vhd, где Vh — объемы участков тела, силы тяжести которых Gк, d — постоянная для всего тела сила тяжести единицы объема (интенсивность силы тяжести по объему тела или, иначе, объемная сила тяжести):

Здесь xh, yk, zk — координаты центров тяжести участков тела с объемами Vk. Для плоских фигур из трех формул используют две. Для плоской фигуры, составленной из линий, прутков,

 

Для плоской фигуры, составленной из площадей,

При решении задач механики используют чаще последние фор­мулы.

Числители в этих формулах, равные алгебраическим суммам произведений площадей частей плоской фигуры на расстояния их центров тяжести до соответствующей оси, называют статическими моментами плоской фигуры относительно осей.

 

Следовательно, ΣAкxк — статический момент плоской фигуры относительно оси у, ΣAкук — статический момент плоской фигуры относительно оси х.

Обозначив статические моменты соответственно Sy, Sx и приняв во внимание, что ΣАк = А — площади всей плоской фигуры, по­следние две формулы примут вид

Отсюда

 

т. е. статический момент плоской фигуры относительно оси абсцисс равен произведению площади фигуры на ординату ее центра тяже­сти, а статический момент относительно оси ординат — произ­ведению площади фигуры на абсциссу ее центра тяжести.

 

Статический момент плоской фигуры выражается в м3, см3 или в мм3.

 

Пример. Определить статические моменты прямоугольника со сторо­нами в = 20 см и h = 14 см относительно осей х и у (рис. 1.85, а).







Дата добавления: 2015-10-19; просмотров: 940. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия