Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производная по направлению. Градиент. Касательная плоскость и





нормаль к поверхности. Геометрический смысл ЧП-ой состоит в следующем: значение ЧП-ой по переменной «х» = тангенсу угла наклона на касательной проведённой к кривой получаемой пересечением поверхностей Z=f(x,y) и плоскости у=у0.Анологично опр-ся геометрический смысл ЧП-ой по переменной «у». Значение ЧП-ой по переменной «у» = тангенсу угла наклона касательной проведённой к кривой к-рая получается при пересечении поверхности с плоскостью х=х0

Геометрический смысл дифференциала: Если к графику гладкой функции в некоторой точке построить касательную, то, отложив на касательной такой отрезок, чтобы его проекция на ось Ох равнялась дельтаХ, получим в проекции на ось Оу отрезок, равный дифференциалу функции в точке касания.

Производной функции u=u(P)=u(x,y,z) по направлению l(или по направлению вектора е)в точке называется предел отношения приращения функции в направлении l к «приращению аргумента»: . В частности,если l совпадает с одной из осей координат,мы получаем определение частной производной.

Градиентом функции u=u(x,y,z)называется векторное поле,координатами которого являются частные производные функции u: .

Касательной плоскостью к поверхности в некоторой точке называется плоскость, которая проходит через эту точку перпендикулярно нормали к поверхности в этой точке.

Из этого определения следует, что уравнение касательной плоскости имеет вид:

F'x (x0, y0, z0) · (x − x0) + F'y (x0, y0, z0) · (y − y0) + F'z (x0, y0, z0) · (z − z0) = 0.

Если точка поверхности является особой, то в этой точке нормальный к поверхности вектор может не существовать, и, следовательно, поверхность может не иметь нормали и касательной плоскости.

Нормалью к поверхности в некоторой ее точке называется прямая, направляющий вектор которой является нормальным к поверхности в этой точке и которая проходит через эту точку.

4,5. Неявные функции. Дифференцирование неявных функций. Неявной функцией от переменных x,y называется соответствие, которое определяется уравнением F(x,y,z)=0,где F(x,y,z)-некоторая функция трех переменных.

Если неявная функция задана уравнением F(x; у)=0, то для нахождения производной от у по х нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию х, и полученное затем уравнение разрешить относительно у'.

Производная неявной функции выражается через аргумент х и функцию у.

Пример: Найти производную функции у, заданную уравнением х3+у3-3ху=0.

Решение: Функция у задана неявно. Дифференцируем по х равенство х3+у3-3ху=0. Из полученного соотношения

3х2+3у2· у'-3(1· у+х· у')=0

следует, что у2у'-ху'=у-х2, т. е. у'=(у-х2)/(у2-х).

4,6. Частные производные высших порядков. Частные производные порядка n функции z=f(x,y)получаются в результате n последовательных дифференцирований этой функции. Если получающиеся при этом смешанные производные непрерывны,то по теореме(Теорема:Если функция z=f(x,y)имеет смешанные производные и в некоторой окрестности точки ,которые непрерывны в самой этой точке, то эти производные в точке равны: ,т.е. производные не зависят от порядка дифференцирования.)они не зависят от порядка дифференцирований.

 

 







Дата добавления: 2015-12-04; просмотров: 117. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия