Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стандартная модель





Комплексное число можно определить как упорядоченную пару 00510511020500005108100вещественных чисел . Введём операции сложения и умножения таких пар следующим образом:

Вещественные числа являются в этой модели подмножеством множества комплексных чисел и представлены парами вида , причём операции с такими парами согласованы с обычными сложением и умножением вещественных чисел. Ноль представляется парой единица — а 0900800018050408008100мнимая единица — На множестве комплексных чисел ноль и единица обладают теми же свойствами, что и на множестве вещественных, а квадрат мнимой единицы, как легко проверить, равен , то есть

Несложно показать, что определённые выше операции имеют те же свойства, что и аналогичные 0010800001080000205105110205001811081050операции с вещественными числами. Исключением являются только свойства, связанные с 09100105008050011804000отношением порядка (больше-меньше), потому что расширить порядок вещественных чисел, включив в него все комплексные числа так, чтобы операции по-прежнему были согласованы с порядком, невозможно.

Действия над комплексными числами

• Сравнение

означает, что и (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

• Сложение

• Вычитание

• Умножение

• Деление

Геометрическая модель

Геометрическое представление комплексного числа

Рассмотрим плоскость с 09118001030018000181081105000000104080001%прямоугольной системой координат. Каждому комплексному числу сопоставим точку плоскости с координатами (а также 000004081102050101%радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется 0900000501000180001001118комплексной. Вещественные числа на ней занимают горизонтальную ось, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями.

Часто бывает удобно рассматривать на комплексной плоскости также 0900181000181081105000000104080001%полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол000004081102050101%радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже.

В этом наглядном представлении сумма комплексных чисел соответствует 005010103050005110818векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в 00010000810510080500005010000818теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «000008110400амплитуда» и «0400070000005010000809фаза».

Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.

Связанные определения

Пусть — комплексное число, где и — 00510511020500005108100вещественные числа. Числа или и или называются соответственно вещественной и мнимой (аналогично 0003008091008091807180англ. real, imaginary) частями .

• Если , то называется мнимым или чисто мнимым числом.

• Если , то является 00510511020500005108100действительным (вещественным) числом.







Дата добавления: 2015-12-04; просмотров: 246. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия