Стандартная модель
Комплексное число • • Вещественные числа являются в этой модели подмножеством множества комплексных чисел и представлены парами вида Несложно показать, что определённые выше операции имеют те же свойства, что и аналогичные 0010800001080000205105110205001811081050операции с вещественными числами. Исключением являются только свойства, связанные с 09100105008050011804000отношением порядка (больше-меньше), потому что расширить порядок вещественных чисел, включив в него все комплексные числа так, чтобы операции по-прежнему были согласованы с порядком, невозможно. Действия над комплексными числами • Сравнение
• Сложение • Вычитание • Умножение • Деление Геометрическая модель Геометрическое представление комплексного числа Рассмотрим плоскость с 09118001030018000181081105000000104080001%прямоугольной системой координат. Каждому комплексному числу Часто бывает удобно рассматривать на комплексной плоскости также 0900181000181081105000000104080001%полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол000004081102050101%радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент). Подробнее см. ниже. В этом наглядном представлении сумма комплексных чисел соответствует 005010103050005110818векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в 00010000810510080500005010000818теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «000008110400амплитуда» и «0400070000005010000809фаза». Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство. Связанные определения Пусть • Если • Если
|