Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если определитель матрицы равен нулю, то обратная к ней не существует.





Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 14.9 Квадратную матрицу назовем вырожденной или особенной матрицей, если , и невырожденной или неособенной матрицей, если .

Предложение 14.21 Если обратная матрица существует, то она единственна.

Доказательство. Пусть две матрицы и являются обратными для матрицы . Тогда

и

Следовательно, .

Предложение 14.22 Если квадратная матрица является невырожденной, то обратная для нее существует и

(14.14)


где -- алгебраические дополнения к элементам .

Доказательство. Так как для невырожденной матрицы правая часть равенства (14.14) всегда существует, то достаточно показать, что эта правая часть является обратной матрицей для матрицы . Обозначим правую часть равенства (14.14) буквой . Тогда нужно проверить, что и что . Докажем первое из этих равенств, второе доказывается аналогично.

Пусть . Найдем элементы матрицы , учитывая, что :

Если , то по предложению 14.17 сумма справа равна нулю, то есть при .

Если , то

Сумма справа представляет собой разложение определителя матрицы по -ой строке (предложение 14.16). Таким образом,

Итак, в матрице диагональные элементы равны 1, а остальные равны нулю, то есть .

Результаты предложений 14.20, 14.21, 14.22 соберем в одну теорему.

Теорема 14.1 Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица -- невырожденная, обратная матрица единственна, и справедлива формула (14.14).

Замечание 14.12 Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца, а второй -- номер строки, в которые нужно записать вычисленное алгебраическое дополнение.

Пример 14.7 Найдите обратную матрицу для матрицы .

Решение. Находим определитель

Так как , то матрица -- невырожденная, и обратная для нее существует.

Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй -- строке:

(14.15)


Полученная матрица и служит ответом к задаче.

Замечание 14.13 В предыдущем примере было бы точнее ответ записать так:

(14.16)


Однако запись (14.15) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (14.15) предпочтительнее, если элементы матриц -- целые числа. И наоборот, если элементы матрицы -- десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание 14.14 При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример 14.8 Найдите обратную матрицу для матрицы .







Дата добавления: 2015-12-04; просмотров: 271. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.099 сек.) русская версия | украинская версия