Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Если определитель матрицы равен нулю, то обратная к ней не существует.





Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 14.9 Квадратную матрицу назовем вырожденной или особенной матрицей, если , и невырожденной или неособенной матрицей, если .

Предложение 14.21 Если обратная матрица существует, то она единственна.

Доказательство. Пусть две матрицы и являются обратными для матрицы . Тогда

и

Следовательно, .

Предложение 14.22 Если квадратная матрица является невырожденной, то обратная для нее существует и

(14.14)


где -- алгебраические дополнения к элементам .

Доказательство. Так как для невырожденной матрицы правая часть равенства (14.14) всегда существует, то достаточно показать, что эта правая часть является обратной матрицей для матрицы . Обозначим правую часть равенства (14.14) буквой . Тогда нужно проверить, что и что . Докажем первое из этих равенств, второе доказывается аналогично.

Пусть . Найдем элементы матрицы , учитывая, что :

Если , то по предложению 14.17 сумма справа равна нулю, то есть при .

Если , то

Сумма справа представляет собой разложение определителя матрицы по -ой строке (предложение 14.16). Таким образом,

Итак, в матрице диагональные элементы равны 1, а остальные равны нулю, то есть .

Результаты предложений 14.20, 14.21, 14.22 соберем в одну теорему.

Теорема 14.1 Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица -- невырожденная, обратная матрица единственна, и справедлива формула (14.14).

Замечание 14.12 Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца, а второй -- номер строки, в которые нужно записать вычисленное алгебраическое дополнение.

Пример 14.7 Найдите обратную матрицу для матрицы .

Решение. Находим определитель

Так как , то матрица -- невырожденная, и обратная для нее существует.

Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй -- строке:

(14.15)


Полученная матрица и служит ответом к задаче.

Замечание 14.13 В предыдущем примере было бы точнее ответ записать так:

(14.16)


Однако запись (14.15) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (14.15) предпочтительнее, если элементы матриц -- целые числа. И наоборот, если элементы матрицы -- десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание 14.14 При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример 14.8 Найдите обратную матрицу для матрицы .







Дата добавления: 2015-12-04; просмотров: 271. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия