Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разность матриц A и B будем обозначать A-B.





Произведением матрицы на число называется матрица , элементы которой определены равенством

Произведение матрицы A на число будем обозначать .

Теорема 2.2 Операция умножения матрицы на число обладает следующими свойствами:

1) ;

2) ;

3) (Распределительное свойство относительно сложения матриц);

4) (Распределительное свойство относительно сложения чисел);

5) -A=(-1)A.

Все перечисленные свойства непосредственно вытекают из определения.

Операции сложения матриц и умножения матрицы на число позволяют для произвольных матриц одинакового размера и произвольных чисел однозначно определить матрицу , называемую линейной комбинацией матриц с коэффициентами .

Умножение матриц. Произведением матриц и называется матрица , элементы которой определены равенством

Произведение матриц A и B будем обозначать C=AB.

Из определения следует, что произведение AB определено лишь в том случае, когда число столбцов матрицы A совпадает с числом строк матрицы B. Это означает, что оба произведения AB и BA определены тогда и только тогда, когда матрицы A и B имеют размеры и соответственно. Следовательно равенство AB=BA возможно лишь для квадратных матриц одинакового порядка. Однако и в этом случае произведение матриц, вообще говоря, зависит от порядка сомножителей.

Матрицы A и B называются перестановочными или коммутирующими, если AB=BA.

Теорема 2.3 Операция умножения матриц обладает следующими свойствами:

1) (AB)C=A(BC); (Свойство ассоциативности)

2) , для любого действительного числа

3) A(B+C)=AB+AC, (A+B)C=AC+BC (Свойство дистрибутивности), для любых матриц A, B, C, для которых левые части равенств имеют смысл.

Справедливость свойств 2) и 3) доказываются непосредственно.

В качестве иллюстрации приведём доказательство первого равенства свойства 3). Пусть , , . Матрицы A(B+C) и AB+AC имеют одинаковый размер - . Пусть - элемент матрицы A(B+C) в позиции (i,j), - элемент матрицы AB+AC в позиции (i,j), тогда

Из равенств (1) и (2) следует, что , что доказывает первое равенство свойства 3).

Подробное доказательство свойства 1) можно найти в учебнике В. А. Ильин, Г. Д. Ким "Линейная алгебра и аналитическая геометрия".

Заметим, что для любой матрицы и единичных матрицы и справедливо:

Транспонирование матриц. Пусть . Матрица называется транспонированной к матрице A, если

Транспонированная матрица также обозначается символами и .

Заметим, что при транспонировании матрицы её строки становятся столбцами матрицы , с теми же номерами, а столбцы - строками.

Теорема 2.4. Операция транспонирования матриц обладает следующими свойствами:

1) ;

2) , для любого действительного числа ;

3) ;

4) , для любых матриц A и B, для которых имеют смысл левые части равенств.

Свойства 1), 2), 4) непосредственно вытекают из определения.

Приведём доказательство свойства 3). Пусть и , при таком согласовании размеров матриц A и B произведения AB и существуют, при этом размеры и совпадают и равны . Пусть - элемент матрицы AB в позиции (i,j), - элемент матрицы , - элемент матрицы в позиции (i,j).

что доказывает справедливость свойства 3).







Дата добавления: 2015-12-04; просмотров: 224. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия