Студопедия — Определенный интеграл и его свойства. Геометрический смысл определенного интеграла и его вычисления.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл и его свойства. Геометрический смысл определенного интеграла и его вычисления.






Определённый интеграл, его свойства

Пусть на отрезке задана функция y=f(x). Разобьем отрезок на n элементарных отрезков точками . На каждом отрезке разбиения выберем некоторую точку и положим , где . Сумму вида

будем называть интегральной суммой для функции y=f(x) на . Очевидно, что интегральная сумма зависит как от способа разбиения отрезка точками , так и от выбора точек на каждом из отрезков разбиения , .

y=f(x)
y
S1
x
0
S2
Sn

 

 


Если существует предел , не зависящий от способа разбиения отрезка и выбора точек , то этот предел будем называть определённым интегралом функции f(x) на отрезке и обозначать символом т.е.

Функция f(x) в этом случае называется интегрируемой на отрезке . При этом f(x) называется подынтегральной функцией, f(x)dxподынтегральным выражением, а числа a и bпределами интегрирования (a – нижний предел, b – верхний предел), а сумма интегральной суммой.

Теорема. Если функция f(x) непрерывна на отрезке , то она интегрируема на этом отрезке.

Свойства определённого интеграла

1.

2. Постоянный множитель можно выносить за знак определённого интеграла:

3. Определённый интеграл от суммы двух функций равен сумме определённых интегралов от этих функций:

4. При перестановке пределов интегрирования определённый интеграл меняет знак на противоположный:

5. Интеграл по отрезку равен сумме интегралов по его частям: где a<c<b.

6. Теорема об оценке интеграла

Если для , тогда значения интеграла от этой функции не менее произведения m на длину отрезка и не более произведения M на длину отрезка.

7. Теорема о среднем значении

Если f(x) непрерывна на отрезке , то существует такое значение , что f(x0)=fср – среднее значение f на отрезке.

Геометрические приложения определённого интеграла







Дата добавления: 2015-12-04; просмотров: 219. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия