Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл и его свойства. Геометрический смысл определенного интеграла и его вычисления.





Определённый интеграл, его свойства

Пусть на отрезке задана функция y=f(x). Разобьем отрезок на n элементарных отрезков точками . На каждом отрезке разбиения выберем некоторую точку и положим , где . Сумму вида

будем называть интегральной суммой для функции y=f(x) на . Очевидно, что интегральная сумма зависит как от способа разбиения отрезка точками , так и от выбора точек на каждом из отрезков разбиения , .

y=f(x)
y
S1
x
0
S2
Sn

 

 


Если существует предел , не зависящий от способа разбиения отрезка и выбора точек , то этот предел будем называть определённым интегралом функции f(x) на отрезке и обозначать символом т.е.

Функция f(x) в этом случае называется интегрируемой на отрезке . При этом f(x) называется подынтегральной функцией, f(x)dxподынтегральным выражением, а числа a и bпределами интегрирования (a – нижний предел, b – верхний предел), а сумма интегральной суммой.

Теорема. Если функция f(x) непрерывна на отрезке , то она интегрируема на этом отрезке.

Свойства определённого интеграла

1.

2. Постоянный множитель можно выносить за знак определённого интеграла:

3. Определённый интеграл от суммы двух функций равен сумме определённых интегралов от этих функций:

4. При перестановке пределов интегрирования определённый интеграл меняет знак на противоположный:

5. Интеграл по отрезку равен сумме интегралов по его частям: где a<c<b.

6. Теорема об оценке интеграла

Если для , тогда значения интеграла от этой функции не менее произведения m на длину отрезка и не более произведения M на длину отрезка.

7. Теорема о среднем значении

Если f(x) непрерывна на отрезке , то существует такое значение , что f(x0)=fср – среднее значение f на отрезке.

Геометрические приложения определённого интеграла







Дата добавления: 2015-12-04; просмотров: 254. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия