Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство.





Пусть , ,тогда , , где и – бесконечно малые последовательности.

Произведение , а .

является суммой бесконечно малых последовательностей и сама является бесконечно малой, например, . Тогда и следовательно .

5. Частное двух сходящихся последовательностей и при условии, что предел отличен от нуля, есть последовательность сходящаяся, а её предел равен частному пределов (без доказательства).

На основании перечисленных свойств можно находить пределы числовых последовательностей.

Рассмотрим некоторые примеры.

3. Найти предел . При делении числителя и знаменателя дроби на одно и то же число, дробь не меняется. Разделим числитель и знаменатель на n2 и получим т.к. , т.к.

Отношение двух сходящихся есть последовательность сходящаяся и поэтому .

4.

1.3. Число «е»

Числом «е» называется предел последовательности с общим членом .

Применив формулу бинома Ньютона, найдем

Учитывая неравенство , для любого , получим и ,

где – сумма бесконечно убывающей геометрической прогрессии ,

Получили, что , т.е. предел последовательности – это некоторое число, лежащее на интервале (2;3).

Это число определил Леонард Эйлер (1707 – 1783) – великий математик, член Петербургской Академии наук, большую часть жизни проведший в России, по происхождению швейцарец.

При помощи современных ЭВМ, это число вычислено с точностью до 590 знаков после запятой. Отдавая дань Эйлеру, это число называют числом «е »: е =2,718281…

Число е играет огромную роль в математике.

Рассмотрим примеры.

1.

2. .

3. .

П редел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу a при увеличении порядкового номера n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

 

Это определение означает, что a есть предел числовой последовательности, если её общий член неограниченно приближается к a при возрастании n. Геометрически это значит, что для любого > 0 можно найти такое число N, что начиная с n > N все члены последовательности расположены внутри интервала (a - , a + ). Последовательность, имею щая предел, называется сходящейся; в противном случае – расходящейся.

1.1. Применения пределов

1.2.1. Площадь круга

 

Для вычисления площади круга единичного радиуса опишем вокруг него правильный n-угольник. Его площадь, равная n площадям одинако-вых равнобедренных треугольников с вершинами в т. О, даст приближение площади круга с избытком. Площадь одного треугольника равна произве-дению единичной высоты на половину основания, равную тангенсу угла ; площадь Sn всего n-угольника будет в n раз больше: .

Например, площадь правильного треугольника: ;

площадь описанного квадрата:

площадь описанного шестиугольника:

Монотонно убывающая последовательность Sn сходится к числу - площади круга единичного радиуса.

Последовательность площадей правильных многоугольников, вписанных в окружность, дает приближения площади круга с недостатком. Площадь одного из n равнобедренных треугольников, составляющих вписанный n-угольник, можно вычислить, как половину произведения единичных сторон на синус угла между ними; обозначив через sn площадь всего n-угольника, получим монотонно возрастающую последовательность приближений, стремящихся к площади круга снизу:







Дата добавления: 2015-12-04; просмотров: 245. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия