Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первая система непрерывных распределений





Пусть распределение случайной величины Х описывается первой системой непрерывных распределений, причем тип выравнивающей кривой и оценки ее параметров заданы.

Пусть далее известно, что все значения хi (i = 1,2,…, n) изменятся на постоянную величину С.

Требуется найти распределение случайной величины Х + С.

Рассмотрим первую плотность первой системы непрерывных распределений

.

Обозначим новое значение случайной величины Х через Х *, при этом

Х*=Х+С. (8.3.1)

Тогда распределение новой случайной величины Х * определится по формуле

. (8.3.2)

Поскольку на основании (8.3.1) dх/dх * = 1, то

p(х*) = p(х), (8.3.3)

или с учетом плотности р (х) и (8.3.1)

(8.3.4)

Введя обозначения

, (8.3.5)

 

последнюю плотность перепишем в виде

. (8.3.6)

Таким образом, смещение случайной величины Х на постоянную С приводит к изменению параметра сдвига α и нормирующего множителя N. Параметры формы k, u не изменяются, т.е. не изменяется форма кривой распределения и, следовательно, характеризующие ее показатели (центральные моменты 2-4 порядков и др.).

Поскольку случайные величины Х и Х * связаны функциональной зависимостью, причем с ростом Х растет и Х *, то их функции распределения равны

F (x *) = F (x). (8.3.7)

Аналогично найдем, что при увеличении случайной величины Т на постоянную С, т.е. при Т*=Т+С параметры положения (сдвига) второй и третьей плотностей первой системы непрерывных распределений будут равны

. (8.3.8)

Остальные параметры и нормирующий множитель останутся без изменения. При этом вторая и третья плотности первой системы непрерывных распределений примут вид

, (8.3.9)

. (8.3.10)

Чтобы рассчитать новые значения плотности распределения с учетом смещения С, в случае первой системы непрерывных распределений достаточно сместить на С значения случайной величины без изменения значений плотности распределения.

Если распределение случайной величины Х задано моментами , то ими можно воспользоваться для прогнозирования распределения.

Пусть . Найдем центральные моменты :

.

Таким образом, в случае сдвига случайной величины Х на постоянную С центральные моменты, а также среднее квадратическое отклонение, не изменятся. Изменится только среднее, что повлечет за собой изменение коэффициента вариации.

По известным моментам случайной величины Х*=Х+С легко найти выравнивающее прогнозируемое распределение.

Рассмотрим далее случай, когда последующие значения случайной величины Х образуются из предыдущих путем их умножения на постоянную величину С: .

Тогда ,

.

Показатели асимметрии и островершинности не изменятся:

По известным моментам случайной величины Х легко находятся моменты случайной величины . Далее по методу моментов нетрудно найти выравнивающее распределение.

Отметим, что в этом случае коэффициент вариации не изменится, поскольку и среднее, и среднее квадратическое отклонение увеличиваются в С раз.







Дата добавления: 2015-12-04; просмотров: 195. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия