Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачі до розділу 8.1





Задача 8.1.1

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться у межах .

 

Рішення

 

Ймовірність того, що випадкова величина Х прийме значення, що вміщується в інтервалі , дорівнює приросту функції розподілу на цьому інтервалі

.

 

Поклавши, що , одержуємо

 

Задача 8.1.2

 

Випадкова величина Х задана на всій осі Ох функцією розподілу . Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться в інтервалі (0, 1).

 

Задача 8.1.3

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення, що знаходиться у межах .

 

Задача 8.1.4

 

Випадкова величина Х задана функцією розподілу

 

 

Знайти ймовірність того, що за результатом випробування величина Х прийме значення: а) менше 0,2; б) менше 3; в) не менше 3; г) не менше 5.

Розділ 8.2. Диференціальна функція розподілу та її властивості

 

 

Нехай випадкова величина – неперервна, тоді функція розподілу F(x) теж неперервна. Нехай в околі точки х функція F(x) є диференційованою.

Означення: Диференціальною функцією розподілу f(x) називають першу похідну інтегральної функції F(x), тобто

 

. (8.5)

 

Властивість 1:Диференціальна функція є невід’ємною

 

.

 

Доведення

 

Ця властивість випливає із означення диференціальної функції як похідної від неспадної функції розподілу F(x). Геометрично це означає, що графік диференціальної функції розміщений або над віссю абсцис, або збігається з нею. Графік диференціальної функції називається кривою розподілу.

 

Властивість 2: Ймовірність того, що неперервна випадкова величина прийме значення з інтервалу дорівнює визначеному інтегралу від диференціальної функції, взятому в межах від а до b, тобто

 

(8.6)

 

 

Із наслідку 2 розділу 8.1 маємо

 

 

Якщо покласти у формулі (8.6) і застосувати теорему про середнє значення у визначному інтегралі, то її можна представити

 

 

Розділивши обидві частини в останній рівності на , отримаємо

 

 

Останнє відношення є середньою щільністю розподілу ймовірностей на проміжку . Якщо перейти до границі при то отримаємо

 

. (8.7)

 

Формула (8.7) задає диференціальну функцію розподілу як щільність розподілу ймовірності неперервної випадкової величини в даній точці. У зв’язку з цим функцію f(x) називають диференціальною функцієюрозподілу або щільністю розподілу.

Приклад:

Дана диференціальна функція випадкової величини. Знайти ймовірність того, що за результатом випробування випадкова величина прийме значення з інтервалу (0,3; 1), якщо диференціальна функція дорівнює

 

Рішення

 

За формулою (8.6)

 

Властивість 3: Інтегральна функція розподілу може бути виражена через диференціальну

(8.8)

 

Доведення

 

 

Покладемо у формулі (8.8) маємо

 

Приклад:

Знайти інтегральну функцію за даною диференціальною функцією

 

Рішення

 

Якщо , тоді f(x)=0 F(x)=0. Якщо , тоді

 

Якщо ж , тоді

 

Властивість 4: Інтеграл у нескінченних межах від диференціальної функції дорівнює одиниці

(8.9)

 

Доведення

 

Цей вираз є ймовірністю події, яка полягає у тому, що випадкова величина прийме значення, яке належить , тобто є ймовірністю достовірної події, а ймовірність достовірної події дорівнює одиниці.

Геометрично це означає, що вся площа, обмежена віссю абсцис і кривою щільності розподілу, дорівнює одиниці. У цьому є аналогія щільності розподілу гістограми питомих відносних частот для статистичного ряду.

 

Приклад:

Диференціальна функція розподілу випадкової величини задана рівністю , знайти параметр а.

 

Рішення

 

За формулою (8.9) одержуємо

 

тому що

 

 

 







Дата добавления: 2015-12-04; просмотров: 257. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия