Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачі до розділу 9.2





Задача 9.2.1

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) в інтервалі , зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Рішення

 

Знайдемо дисперсію за формулою

 

.

 

Спочатку знайдемо математичне сподівання

 

 

Тоді дисперсія буде дорівнювати

 

.

 

Середнє квадратичне відхилення знайдемо за формулою

 

.

 

Задача 9.2.2

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) f(x)=0,08x в інтервалі (0, 5), зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Задача 9.2.3

 

Неперервна випадкова величина Х задана інтегральною функцією

 

 

Знайти математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини Х.

 

 

Розділ 9.3. Завдання до заняття 9

Теоретичні питання до заняття 9

1. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

2. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку .

3. Дати означення дисперсії неперервної випадкової величини.

4. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

5. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку .

6. Дати означення середнього квадратичного відхилення неперервної випадкової величини.

 

 

Розділ 10.1. Закони розподілу дискретних випадкових величин







Дата добавления: 2015-12-04; просмотров: 336. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия