Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачі до розділу 9.2





Задача 9.2.1

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) в інтервалі , зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Рішення

 

Знайдемо дисперсію за формулою

 

.

 

Спочатку знайдемо математичне сподівання

 

 

Тоді дисперсія буде дорівнювати

 

.

 

Середнє квадратичне відхилення знайдемо за формулою

 

.

 

Задача 9.2.2

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) f(x)=0,08x в інтервалі (0, 5), зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Задача 9.2.3

 

Неперервна випадкова величина Х задана інтегральною функцією

 

 

Знайти математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини Х.

 

 

Розділ 9.3. Завдання до заняття 9

Теоретичні питання до заняття 9

1. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

2. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку .

3. Дати означення дисперсії неперервної випадкової величини.

4. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

5. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку .

6. Дати означення середнього квадратичного відхилення неперервної випадкової величини.

 

 

Розділ 10.1. Закони розподілу дискретних випадкових величин







Дата добавления: 2015-12-04; просмотров: 336. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия