Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачі до розділу 9.2





Задача 9.2.1

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) в інтервалі , зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Рішення

 

Знайдемо дисперсію за формулою

 

.

 

Спочатку знайдемо математичне сподівання

 

 

Тоді дисперсія буде дорівнювати

 

.

 

Середнє квадратичне відхилення знайдемо за формулою

 

.

 

Задача 9.2.2

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) f(x)=0,08x в інтервалі (0, 5), зовні цього інтервалу f(x)=0. Знайти дисперсію і середнє квадратичне відхилення випадкової величини Х.

 

Задача 9.2.3

 

Неперервна випадкова величина Х задана інтегральною функцією

 

 

Знайти математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини Х.

 

 

Розділ 9.3. Завдання до заняття 9

Теоретичні питання до заняття 9

1. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

2. За якою формулою обчислюється математичне сподівання неперервної випадкової величини, всі можливі значення якої належать проміжку .

3. Дати означення дисперсії неперервної випадкової величини.

4. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку . Пояснити складові формули.

5. За якою формулою обчислюється дисперсія неперервної випадкової величини, всі можливі значення якої належать проміжку .

6. Дати означення середнього квадратичного відхилення неперервної випадкової величини.

 

 

Розділ 10.1. Закони розподілу дискретних випадкових величин







Дата добавления: 2015-12-04; просмотров: 336. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия