Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Індивідуальні завдання до розділу 6





 

Розділ 7.1. Доцільність введення числової характеристики розсіювання випадкової величини

Досить часто зустрічаються такі випадки, коли випадкові величини мають однакові математичні сподівання, але різні можливі значення.

Приклад:

Дискретні випадкові величини Х та У задано наступними законами розподілу

Х -0,01 0.01
Р 0,5 0,5

 

У -100  
Р 0,5 0,5

Знайдемо математичне сподівання цих величин

 

Як видно, математичне сподівання приймає однакові значення, а можливі значення різні, причому дискретна випадкова величина Х має можливі значення ближчі до математичного сподівання, ніж дискретна випадкова величина У. Таким чином, за величиною математичного сподівання не можна судити про можливі значення дискретної випадкової величини, про те, як ці можливі значення розсіяні навколо математичного сподівання. Іншими словами, математичне сподівання повністю не характеризує дискретну випадкову величину Х.

Тому на ряду з математичним сподіванням вводять і інші числові характеристики, що характеризують відхилення (розсіювання) випадкової величини від її середнього значення: дисперсію і середнє квадратичне відхилення.

Розділ 7.2. Дисперсія дискретної випадкової величини та її властивості. Середнє квадратичне відхилення

 

Перед тим, як перейти до означення і властивостей дисперсії, введемо поняття відхилення випадкової величини від її математичного сподівання.

Нехай Х – випадкова величина і - її математичне сподівання. Розглянемо як нову випадкову величину різницю . Відхиленням називається різниця між випадковою величиною та її математичним сподіванням.

Теорема: Математичне сподівання відхилення випадкової величини від її математичного сподівання дорівнює нулю, тобто

 

 

Доведення

 

Використовуючи спочатку властивість 4 математичного сподівання, а потім властивості 1 і 2 одержуємо

 

 

Тому це відхилення у подальшому не розглядається як характеристика розсіювання випадкової величини. У цьому випадку прийнято вивчати квадрат відхилення

 

Означення: Дисперсією або розсіюванням дискретної випадкової величини називається математичне сподівання квадрата відхилення випадкової величини від її математичного сподівання, позначається

 

(7.1)

 

Якщо врахувати означення математичного сподівання (див. формулу 6.2), то вираз для дисперсії із формули (7.1) можна записати у розгорнутому вигляді так

 

(7.2)

 

Формула (7.1) незручна при обчисленнях, тому перетворимо її і подамо у більш зручному вигляді. Для цього застосуємо теорему.

Теорема: Дисперсія дорівнює різниці між математичним сподіванням квадрата випадкової величини та квадратом її математичного сподівання

(7.3)

Доведення

Із означення дисперсії випливає

.

Оскільки і , то ввівши позначення

(7.4)

отримаємо далі

 

 

Таким чином, остаточно отримуємо

 

,

де – математичне сподівання квадрата випадкової величини, знаходиться за формулою (7.4), а – математичне сподівання за формулою (6.2) заняття 6.

 

Приклад:

1. Знайти дисперсію випадкової величини, заданої законом розподілу

 

Х      
Р 0,2 0,5 0,3

Рішення

Знайдемо спочатку математичне сподівання випадкової величини Х

Тепер знайдемо математичне сподівання квадрата випадкової величини, для цього складемо розподіл

 

Х2      
Р 0,2 0,5 0,3

 

За формулою (7.3) маємо

 

Розглянемо основні властивості дисперсії.

 

Властивість 1. Дисперсія сталої величини дорівнює нулю

.

 

Доведення

 

За формулою (7.3) маємо

Властивість 2. Сталий множник можна виносити за знак дисперсії, піднісши його до квадрата, тобто

.

Доведення

 

За означенням дисперсії маємо

.

 

Властивість 3. Дисперсія суми двох випадкових величин дорівнює сумі дисперсії цих величин, тобто

 

.

 

Доведення

За формулою (7.3) маємо

Властивість 4. Дисперсія суми випадкової величини і сталої дорівнює дисперсії випадкової величини

.

Доведення

Використаємо властивості 1 і 3 дисперсії

 

Властивість 5. Дисперсія різниці двох випадкових величин дорівнює сумі дисперсій цих випадкових величин

 

 

Доведення

Відповідно до властивостей 2 і 3 маємо:

 

Означення: Середнім квадратичним відхиленням випадкової величини називається корінь квадратний із дисперсії і позначається

 

. (7.5)

 







Дата добавления: 2015-12-04; просмотров: 252. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия