Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачі до розділу 9.1





Задача 9.1.1

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) f(x)=2x в інтервалі (0, 1), зовні цього інтервалу f(x)=0. Знайти математичне сподівання випадкової величини Х.

 

Рішення

 

Використаємо формулу (9.3)

.

.

 

Задача 9.1.2

 

Випадкова величина Х задана диференціальною функцією (щільністю розподілу) f(x)=0,5x в інтервалі (0, 2), зовні цього інтервалу f(x)=0. Знайти математичне сподівання випадкової величини Х.

 

Задача 9.1.3

 

Знайти математичне сподівання неперервної випадкової величини Х, що задана інтегральною функцією

 

 

Розділ 9.2. Дисперсія та середнє квадратичне відхилення неперервної випадкової величини

За аналогією до дисперсії дискретної неперервної величини визначається і дисперсія неперервної випадкової величини.

Означення: Дисперсією неперервної випадкової величини Х, заданої на відрізку [а,b], називається математичне сподівання квадрата її відхилення від математичного сподівання

 

. (9.4)

 

Аналогічно для випадку, коли

 

. (9.5)

 

Після перетворення інтегралу (9.4) отримаємо

 

.

Якщо ж позначити

,

то формула (9.4) запишеться у вигляді

 

D(X)=M(X2)-[M(X)]2. (9.6)

 

Аналогічним буде вираз для дисперсії, якщо , тільки треба брати

 

 

а М(Х) за формулою (9.2) із розділу 9.1.

Означення: Середнє квадратичне відхилення неперервної випадкової величини дорівнює кореню квадратному із дисперсії неперервної випадкової величини:

 

. (9.7)

Приклад:

Знайти математичне сподівання і дисперсію неперервної випадкової величини, заданої інтегральною функцією F(x), якщо

 

 

Рішення

 

Знайдемо відповідну диференціальну функцію

 

тоді

 

 

 







Дата добавления: 2015-12-04; просмотров: 254. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия