Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для бакалавров – заочников инженерного факультета 8 страница





– вероятность события А при условии, что событие (гипотеза) произошло, т.е. вероятность появиться шестерке, если выбран правильный кубик, равна : = .

Аналогично, = Поэтому

Видим, что полная вероятность Р (А) = 1/4 находится между условными вероятностями = и =

 

 

Пример 31 (к задачам 231-240). Вероятность попадания в цель при одном выстреле равна 0,8. Составить ряд и функцию распределения числа попаданий в цель при четырех выстрелах. Вычислить математическое ожидание и дисперсию. Найти вероятность того, что при четырех выстрелах будет не менее двух попаданий. Показать графически.

Решение. Во-первых, обозначим случайную величину =(число попаданий в цель при четырех выстрелах). Очевидно, СВ может принимать следующие значения: 0,1,2,3,4. При вычислении соответствующих вероятностей ясно, что имеет место повторение опыта (один и тот же стрелок производит выстрел 4 раза), следовательно, должна применяться формула Бернулли , где - вероятность того, что в результате опытов событие (в нашей задаче – попадание в цель) появится равно т раз, р - вероятность события в одном опыте (в нашей задаче р= 0,8), q – вероятность противоположного события;

= , 0! = 1.

Проводим вычисления

; ;

; ;

.

Составим ряд распределения случайной величины (дискретной) :

 

= хi          
р = рi 0,0016 0,0256 0,1536 0,4096 0,4096

 

Проверяем правильность вычисления

 

Функцией распределения F (х) случайной величины называется вероятность , т.е. вероятность того, что СВ примет значения, меньше х: . Для дискретных СВ функция распределения является дискретной (т.е. разрывной) разрывы функция терпит в точках хi. Действительно проводим вычисления для нашей задачи: если , то событие () – невозможное Æ и, следовательно, Р (Æ) = 0.

Далее, пусть . Тогда .

Аналогично: пусть , тогда:

 

пусть , тогда:

 

;

 

пусть , тогда:

 

;

 

и, наконец, пусть х > 4, тогда:

 

.

 

Построим график функции F (х):

 

 

F (х):

1

 

0,4904

 

0,1808


0,0016

0 1 2 3 4 х

Стрелки на графике означают, что функция в точках разрыва указанного стрелкой значения не достигает. Например, Р (3)=0,1808 (но не 0,4904), а 0,4904 = F (3+0).

Вычислим числовые характеристики (математическое ожидание т и дисперсию ):

.

Дисперсию можно вычислить по определению , или по формуле . По последней формуле имеем .

Среднее квадратное отклонение = 0,7936.

Итак, мы имеем два вида закона распределения дискретной случайной величины (ДСВ) – ряд распределения и функцию распределения. Пользуясь этими законами, найдем вероятность .

Во-первых, эту вероятность можно расписать следующим образом:

и, глядя на ряд распределения, получаем, что 0,1536 + 0,4096 + 0,4096 = 0,9728. Этот же результат можно получить, используя функцию распределения по формулам:

;

;

;

;

.

Теперь, выбирая нужную формулу и глядя на функцию распределения, получим 0,9728.

 

 

Пример 32 (к задачам 241-250). Имеются данные о выходе валовой продукции (в руб.) на 1 га сельскохозяйственных угодий для 50 хозяйств;

 

                         
                         
                         
                         

Требуется:

1. Построить вариационный ряд частот или относительных частот;

2. Изобразить геометрически вариационный ряд, построив гистограмму частот;

3. Вычислить точечные оценки параметров распределения;

4.Высказать гипотезу о виде закона распределения признака и применить критерий согласия хи-квадрат Пирсона на 5%-м уровне значимости;

5. Считая полученный набор данных генеральной совокупностью, сделать из этой
совокупности выборку объема 10, для которой:

а) вычислить точечные оценки параметров распределения - выборочную среднюю арифметическую (10) и исправленную выборочную дисперсию (10), сравнить полученные значения с соответствующими характеристиками генеральной совокуп­ности;

б) найти доверительный интервал для генеральной средней на уровне значимости а = 0,05 при неизвестной и известной дисперсии;

в) найти доверительный интервал для генеральной дисперсии.
Решение.

1) Изучается непрерывный признак X - выход валовой продукции (в руб.) на 1 га сельскохозяйственных угодий. Для непрерывного признака по результатам выборки составляется интервальный вариационный ряд. Для этого весь диапазон изменения признака X — размах вариации R = , разобьем на несколько интервалов длины h. Обычно рекомендуется разбивать на 5-10 интервалов одинаковой длины. Вообще, для выбора такой длины h интервала, чтобы ряд распределения не был слишком громоздким и в то же время отражал характерные черты распределения, рекомендуется использовать формулу Стэрджеса: . При этом за правый конец первого интервала следует взять (), а за левый ко­нец последнего — (). В нашей задаче R=1081-250=831 и по формуле Стэрджеса получаем . Обычно значение h, вычисленное по формуле Стэрдже­са, округляют до удобного для вычислений значения. Возьмем h = 150, а за правый конец первого интервала — . Итак, получаем интервальный ряд частот и относительных частот.

Интервальный ряд частот и относительных частот валовой продукции (руб.) на 1 га с/х угодий.

Выход валовой продукции Х (руб.) Менее         Свыше
  325-475 475-625 625-775 775-925  
  -250- -400- -550- -700- -850- -1000-
пi            
W i 0,2 0,48 0,2 0,04 0,04 0,04

2) Графическим изображением вариационного ряда служит гистограмма частот или относительных частот. Построим гистограмму частот. Для этого на оси абсцисс откладываем отрезки, изображающие длины h интервалов изменения признака X. На этих отрезках как на основаниях строим прямоугольники с высотами, равными пi

3) Для вычисления среднего арифметического и дисперсии признака его интер­вальный вариационный ряд преобразуют в дискретный, заменяя каждый интервал его срединным значением. В таблице соответствующие срединные значения каждо­го интервала записаны в первой строке таблицы. Теперь можно заняться вычислени­ем числовых характеристик. Они вычисляются так же, как для дискретных рядов.

Выбо­рочная средняя арифметическая:

Выборочная дисперсия:

Выборочное среднее квадратическое отклонение: ;

Коэффициент вариа­ции: (39,5%).

Каждое из полученных значений числовых характеристик за­даются одним числом (т.е. одной точкой на числовой прямой), поэтому они называ­ются точечными оценками неизвестных параметров всей генеральной совокупности.

Всякое высказывание о генеральной совокупности, проверяемое по выборке, называется статистической гипотезой. Статистические гипотезы классифицируют на гипотезы о законах распределения и гипотезы о параметрах распределения. Критерии проверки статистических гипотез о законе распределения называются критериями согласия. Критерий согласия хи-квадрат Пирсона — самый старый и самый распространенный.

4) Пусть в результате п наблюдений признака X получен вариационный ряд. Анализ выборки (например, по виду гистограммы частот - если в нашем примере через верхние основания прямоугольников гистограммы провести плавную линию, то она будет иметь колоколообразную форму, т.е. похожа на график плотности вероятности нормального распределения) приводит нас к предположению о некотором (например, нормальном) законе распределения признака X. Параметры этого распределения, если заранее не известны, оцениваются по выборочным данным и, таким образом, нам становится известным предполагаемый теоретический закон распределения. По этому закону легко определить вероятности того, что признак примет значение, принадлежащее i -му интервалу. Отсюда для выборки объема n получаем теоретические частоты и сравниваем их с фактическими . В качестве меры расхождения теоретического и эмпирического ряда частот берется случайная величина (читается как хи-квадрат):

= ,

которая оказывается распределенной по закону хи-квадрат.

Как уже говорилось, есть основание предполагать, что признак X в нашем примере распределен по нормальному закону. Итак, мы высказываем гипотезу о том, что признак X распределен по нормальному закону с математическим ожида­нием и средним квадратическим отклонением (или дис­персией 2=32184).

Теоретические частоты находятся по формуле где п - объем вы­борки, - вероятность попадания значений признака X в соответствующий интер­вал. Поскольку признак распределен по нормальному закону с математическим ожиданием и дисперсией , то вероятность определяется с помощью функции Лапласа по формуле

.

Отметим, что для вычисления вероятностей по этой формуле левый конец первого интервала следует брать равным (), а правый конец последнего интервала рав­ным (). Значения функции Лапласа берем из таблицы. В условиях нашей задачи получаем:

р1 Ф (–0,72) – Ф () =Ф (0,72)+ Ф () =

= Ф () – Ф (0,72) = 0,5 – 0,2642 = 0,2358; 0,2358=11,79.

р2Ф = Ф (–0,12) – Ф (–0,72) = Ф (0,12) + Ф (0,72) =

= 0,0478+0,2642 = 0,312; 15,6.

Продолжая аналогичные вычисления для остальных интервалов, найдем вероятности и соответствующие им теоретические частоты. Результаты вычислений приведены в следующей таблице.

 

Интервальный вариационный ряд фактических и теоретических частот и относительных частот выхода валовой продукции (руб.) на 1 га сельскохозяйственных угодий

 

Х(руб.) Менее 325 325-475 475-625 625-775 775-925 Свыше 925
           
W i 0,2 0,48   0,2 0,04 0,04 0,04
11,79 15,6 14,05 6,72 1,62 0,22
0,2358   0,312 0,2809 0,134 0,0323 0,005

Теперь вновь построим гистограмму частот и на этом рисунке по результатам про­веденных вычислений построим график теоретического нормального распределе­ния, т.е. наряду с фактическими частотами построим и теоретические.

На рисунке получившаяся ступенчатая фигура заштрихована. Отчетливо видны рас­хождения между эмпирическим (выборочным) и теоретическим распределениями. Остается выяснить существенно ли на заданном уровне значимости а = 0,05 это рас­хождение. Ответ на этот вопрос и дает случайная величина . Число k степеней свободы этой случайной величины определяется соотношением k = т – 3, где т – число различных интервалов в вариационном ряду. Необходимо учесть следующее замечание: малочисленные частоты () следует объединить. В этом случае ответствующие им теоретические частоты также надо сложить, а при определении числа степеней свободы по формуле k = т3 в качестве т принять число групп выборки, оставшихся после объединения частот.

В нашем примере объединим последние три интервала. В результате получим 4 интервала (т = 4):

 

       
11,79 5,6 14,05 8,56

 

Применяем формулу критерия хи-квадрат, учитывая, что число к степеней свободы критерия равно k = 4 – 3 = 1:

(1)

Таким образом, получили фактическое значение критерия = 6,73. По табл. распределения для числа степеней свободы к=1 при уровне значимости а = 0,05находим критическое значение критерия: = 3,8. Итак, получаем, что фактическое значение критерия превысило критическое (6,73 > 3,8), поэтому на уровне значимости а = 0,05 гипотезу о том, что признак X распределен по нормальному закону, следует отвергнуть.

Следует заметить, что если бы критерий хи-квадрат Пирсона (или какой-нибудь другой) дал положительный результат ( < ),т.е. гипотезу о нормаль­ном распределении следовало бы принять, то это не означало бы, что признак в дей­ствительности распределен по нормальному закону. Это означает лишь то, что вы­борочные данные на заданном уровне значимости (т.е. на заданном уровне надежно­сти - в нашем примере с надежностью р = 1– а = 0,95 = 95%) не противоречат вы­сказанной гипотезе. Более высокие требование к надежности выводов могут привес­ти к отклонению гипотезы и принудят искать другие, более подходящие гипотезы.

5) В этом пункте, собственно, демонстрируется выборочный метод. При изучении признака, характеризующего некоторую совокупность однородных объектов, не всегда имеется возможность обследовать каждый объект изучаемой совокупности. Например, для выяснения среднего срока службы электрических лампочек, изготов­ляемых некоторым заводом, абсурдно проверять продолжительность горения каж­дой лампочки. Для выяснения некоторых качественных показателей всей совокуп­ности (она называется генеральной совокупностью) исследованию подвергают лишь небольшую часть её, отобранную случайно. Эта часть называется выборочной сово­купностью (или просто выборкой). Задача математической статистики состоит в изучении методов, позволяющих делать научно обоснованные выводы о характери­стиках признака X генеральной совокупности по исследованию выборки из неё. Ос­новным условием, которое предъявляется к выборке, для того, чтобы она наиболее достоверно отражала все существенные особенности генеральной совокупности, яв­ляется случайность отбора. В зависимости от способа отбора различают выборки следующих типов: собственно случайные повторные, собственно случайные бесповторные, механические, типические, серийные и т.д.

Обозначим математическое ожидание и дисперсию признака X соответствен­но через а и . Значения признака естественно, будут меняться от вы­борки к выборке. Таким образом, каждое значение считается не числом, а слу­чайной величиной , имеющей те же числовые характеристики а и , что и при­знак X. В этом заключается так называемая гипотетическая интерпретация выбо­рочных данных (ГИВД). Всякую однозначно определенную функцию результатовнаблюдения, с помощью которой судят о значении параметра называется оценкой (или статистикой) параметра . Так, например, со­стоятельной, несмещенной и, в случае нормального распределения признака X, эф­фективной оценкой генеральной средней является выборочная средняя. При боль­ших значениях п (п > 30) в качестве оценки генеральной дисперсии признака можно взять выборочную дисперсию

.

Каждая из оценок и определяется одним числом, т.е. точкой на чи­словой прямой, и потому называются точечными оценками. Необходимо, однако, всегда помнить, что нахождение точечной оценки некоторого параметра - это лишь первый этап. Далее обязательно надо найти точность этой оценки или, как говорят, доверительный интервал. Интервал ( 1, 2 ) называется доверительным интервалом для параметра , если с заранее заданной вероятностью р = 1 – α можно утверждать, что он содержит неизвестное значение параметра , т.е. Р( 1< < 2)= р = 1 – α;







Дата добавления: 2015-12-04; просмотров: 249. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия