Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамические потенциалы. Характеристические функции. Условия равновесия





 

Изохорно-изотермический и изобарно-изотермический потенциалы принадлежат к классу функций состояния системы, носящих название термодинамических потенциалов. Эти величины имеют размеренность энергии и стремятся к минимуму при протекании определенных процессов. Термодинамические потенциалы являются критериями направления процесса; минимальные значения их отвечают условию равновесия.

Из уравнения (4.43), учитывая что , находим:

(4.76)

При постоянных и

(4.77)

При всех неравновесных изохороно-изэнтропных процессах () внутренняя энергия убывает; когда величина достигает минимума, система приходит в равновесие. Условие равновесия:

; (4.78)

Для энтальпии выражение, аналогичное (4.76) можно получить, дифференцируя уравнение (4.22) и сочетая полученное выражение с уравнением (4.76):

(4.79)

При постоянных и .

Условие равновесия:

; (4.80)

Внутренняя энергия является, таким образом, изохорно-изэнтропным потенциалом, а энтальпия – изобарно-изэнтропным потенциалом. Эти функции могут служить критериями равновесия при условии постоянства энтропии. Так как энтропию непосредственно измерить нельзя, поэтому функции и не находят широкого применения.

Сопоставим выражения (4.76), (4.79), (4.53) и (4.64) для полных дифференциалов функций , , и . Эти выражения образуют замкнутую группу, в которой две пары переменных – и (параметры, связанные с теплотой), с одной стороны, и и (параметры, связанные с работой), с другой стороны, - дают все возможные сочетания. В зависимости от характера изучаемого процесса может быть использована та или иная из этих функций.

Частными производными четырех функций при данном, характерном для каждой из них наборе независимых переменных являются основные параметры состояния системы: , , и . Отсюда вытекает важное свойство этих функций: через каждую из этих функций и ее производные можно выразить в явной форме любое термодинамическое свойство системы.

Каждая функция

; ; ; (4.81)

Поэтому указанные функции (термодинамические потенциалы) называют также характеристическими. На рис. 4.3. показана схема взаимосвязей характеристических функций и их переменных.

Рис.4.3. Схема взаимосвязи характеристических функций и их естественных переменных.

Легко видеть, что характеристическими функциями могут являться не только указанные четыре потенциала, но и параметры, если выразить их как функции других величин.

Сопоставим следующие выражения:

;

;

;

;

;

На основании этого сопоставления можно сформулировать условия равновесия системы следующим образом: в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение при постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы.







Дата добавления: 2015-06-15; просмотров: 592. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия