Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамические потенциалы. Характеристические функции. Условия равновесия





 

Изохорно-изотермический и изобарно-изотермический потенциалы принадлежат к классу функций состояния системы, носящих название термодинамических потенциалов. Эти величины имеют размеренность энергии и стремятся к минимуму при протекании определенных процессов. Термодинамические потенциалы являются критериями направления процесса; минимальные значения их отвечают условию равновесия.

Из уравнения (4.43), учитывая что , находим:

(4.76)

При постоянных и

(4.77)

При всех неравновесных изохороно-изэнтропных процессах () внутренняя энергия убывает; когда величина достигает минимума, система приходит в равновесие. Условие равновесия:

; (4.78)

Для энтальпии выражение, аналогичное (4.76) можно получить, дифференцируя уравнение (4.22) и сочетая полученное выражение с уравнением (4.76):

(4.79)

При постоянных и .

Условие равновесия:

; (4.80)

Внутренняя энергия является, таким образом, изохорно-изэнтропным потенциалом, а энтальпия – изобарно-изэнтропным потенциалом. Эти функции могут служить критериями равновесия при условии постоянства энтропии. Так как энтропию непосредственно измерить нельзя, поэтому функции и не находят широкого применения.

Сопоставим выражения (4.76), (4.79), (4.53) и (4.64) для полных дифференциалов функций , , и . Эти выражения образуют замкнутую группу, в которой две пары переменных – и (параметры, связанные с теплотой), с одной стороны, и и (параметры, связанные с работой), с другой стороны, - дают все возможные сочетания. В зависимости от характера изучаемого процесса может быть использована та или иная из этих функций.

Частными производными четырех функций при данном, характерном для каждой из них наборе независимых переменных являются основные параметры состояния системы: , , и . Отсюда вытекает важное свойство этих функций: через каждую из этих функций и ее производные можно выразить в явной форме любое термодинамическое свойство системы.

Каждая функция

; ; ; (4.81)

Поэтому указанные функции (термодинамические потенциалы) называют также характеристическими. На рис. 4.3. показана схема взаимосвязей характеристических функций и их переменных.

Рис.4.3. Схема взаимосвязи характеристических функций и их естественных переменных.

Легко видеть, что характеристическими функциями могут являться не только указанные четыре потенциала, но и параметры, если выразить их как функции других величин.

Сопоставим следующие выражения:

;

;

;

;

;

На основании этого сопоставления можно сформулировать условия равновесия системы следующим образом: в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение при постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы.







Дата добавления: 2015-06-15; просмотров: 592. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия