Термодинамические потенциалы. Характеристические функции. Условия равновесия
Изохорно-изотермический и изобарно-изотермический потенциалы принадлежат к классу функций состояния системы, носящих название термодинамических потенциалов. Эти величины имеют размеренность энергии и стремятся к минимуму при протекании определенных процессов. Термодинамические потенциалы являются критериями направления процесса; минимальные значения их отвечают условию равновесия. Из уравнения (4.43), учитывая что , находим: (4.76) При постоянных и (4.77) При всех неравновесных изохороно-изэнтропных процессах () внутренняя энергия убывает; когда величина достигает минимума, система приходит в равновесие. Условие равновесия: ; (4.78) Для энтальпии выражение, аналогичное (4.76) можно получить, дифференцируя уравнение (4.22) и сочетая полученное выражение с уравнением (4.76): (4.79) При постоянных и . Условие равновесия: ; (4.80) Внутренняя энергия является, таким образом, изохорно-изэнтропным потенциалом, а энтальпия – изобарно-изэнтропным потенциалом. Эти функции могут служить критериями равновесия при условии постоянства энтропии. Так как энтропию непосредственно измерить нельзя, поэтому функции и не находят широкого применения. Сопоставим выражения (4.76), (4.79), (4.53) и (4.64) для полных дифференциалов функций , , и . Эти выражения образуют замкнутую группу, в которой две пары переменных – и (параметры, связанные с теплотой), с одной стороны, и и (параметры, связанные с работой), с другой стороны, - дают все возможные сочетания. В зависимости от характера изучаемого процесса может быть использована та или иная из этих функций. Частными производными четырех функций при данном, характерном для каждой из них наборе независимых переменных являются основные параметры состояния системы: , , и . Отсюда вытекает важное свойство этих функций: через каждую из этих функций и ее производные можно выразить в явной форме любое термодинамическое свойство системы. Каждая функция ; ; ; (4.81) Поэтому указанные функции (термодинамические потенциалы) называют также характеристическими. На рис. 4.3. показана схема взаимосвязей характеристических функций и их переменных.
Легко видеть, что характеристическими функциями могут являться не только указанные четыре потенциала, но и параметры, если выразить их как функции других величин. Сопоставим следующие выражения: ; ; ; ; ; На основании этого сопоставления можно сформулировать условия равновесия системы следующим образом: в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение при постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы.
|