Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 3. Дифференцируемость и полный дифференциал функции





9. LJNEP Chemicals 2000. Master list of actions on the reduction and/or elimination of the releases of persistent organic pollutants. Geneva, 2000

10. WWF. Persistent organic pollutants: hand me down poisons that threaten wildlife and people. Washington, 1999

Вопрос 2. Частные производные первого порядка и их геометрическое истолкование.

Найдем частные производные ∂z/∂x; ∂z/∂y. Это тоже ф-ции, значит можно найти их частные проиводные. ∂z/dx(∂z/∂x)= ∂^2z/∂x^2- это частная производная ф-ции z по переменному x 2-го порядка.

Аналогично ∂z/dy(∂z/∂y)= ∂^2z/∂y^2- частная производная по у 2-го порядка.

Если же частную производную по х дифференцировать по у то полученная производная наз-ся смешанной частной производной 2-го порядка.

∂z/dx(∂z/∂у)= ∂^2z/∂x*∂у

Частные производные можно обозначить: ∂^2f/∂x^2=f’’xx(x,y);

 

∂^2f/∂y^2=f’’yy(x,y); ∂^2f/∂y*∂x=f’’xy (x,y); ∂^2f/∂x*∂y=f’’yx (x,y);

Геометрическое истолкование:

Для простоты рассмотрим функции от 2-х переменных z=f(x,y). Зафиксируем переменную. Дадим х приращение ∆х. найдем приращение ф-ции f

∆xf=f(x+∆x;y)-f(x,y). Такое приращение называется частным приращением по переменному х. предел отношения частного приращения по переменному х к приращению аргумента ∆х при ∆х→0, называется частной производной функции по переменному х и обозначается

 

Lim(∆x→0)∆xf/∆x=fx’(x,y)=df/dx

 

 

Зафиксируем переменную х. найдем приращение ф-ции ∆yf

∆yf=f(x,y+∆y)-f(x,y)-частное приращение по переменному у.

Предел отношения частного приращения функции по переменному у к приращению аргумента ∆у при ∆у→0 называется частной производной ф-ции по переменному у

Lim(∆y→0)∆yf/∆y=f’y ∂f/∂y

Вопрос 3. Дифференцируемость и полный дифференциал функции.

Опр: дифференциалом ф-ции z=f(x,y) наз-ся выражение вида dz=dz/dx*dx+ dz/dy * dy

Опр: дифференциалом ф-ции z=f(x,y) 2-го порядка наз-ют выражение вида: d^2z=d^2z/dx^2 * dx^2 + 2 (d^2z/dx*dy) * dx*dy + (d^2z/dy^2) *dy^2y

Пусть функция z=f(x,y) определена в некоторой окрестности точки M(x,y). Составим полное приращение функции в точке М:

∆z=f(x+∆x;y+∆y)-f(x,y)

 

Функция z=f(x,y) называется дифференцируемой в точке M(x,y), если её полное приращение в этой точке можно представить в виде

∆z=A*∆x+B*∆y+a*∆x+β*∆y

A=a(∆x,∆y)→0 и β=β(∆x,∆y)→0 при ∆x→0, ∆y→0. Сумма первых двух слагаемых в равенстве (1) представляет собой главную часть приращения функции..

Главная часть приращения функции z=f(x,y), линейная относительно ∆x→0, ∆y→0, называется полным дифференциалом этой функции и обозначается символомdz:

∆z=A*∆x+B*∆y

ВыраженияA*∆x и B*∆y называют частными дифференциалами. Для независимых переменных х и у полагают∆x=xи∆y=y. Поэтому равенство (2) можно переписать в виде

Dz=Adx+Bdy

 







Дата добавления: 2015-06-15; просмотров: 430. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия