Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эмпирическая функция распределения




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Распределение выборки (эмпирическое распределение) – это распределение вероятностей, которое определяется по выборке для оценивания истинного распределения.

Определим для каждого действительного х случайную величину mn(x), равную числу элементов выборки =(X1,...,Xn), значения которых не превосходят х, т.е.

, (.3)

где I(A) - индикатор события А {I(A)=1, если А имеет место, и 0 - в противном случае}. Положим Fn(x)= .

Функция Fn(x) называется эмпирической функцией распределения(э.ф.р.), соответствующей выборке . Функцию распределения F(x) наблюдаемой случайной величины x называют теоретической функцией распределения.

По своему определению эмпирическая функция распределения – случайная функция: для каждого хÎR1 значение Fn(x) есть случайная величина, реализациями которой являются числа 0, 1/n, 2/n,..., (n-1)/n, n/n=1, при этом

P(Fn(x)=k/n)=P(mn(x)=k).

 

Из определения mn(х) следует, что L(mn(х))=Bi(n,p), где p=P(x£x)=F(x). Поэтому

P(Fn(x)=k/n)=CnkFk(x)(1-F(x))n-k, k=0,1,...,n. (4)

 

Итак, эмпирическая функция распределения (как и вариационный ряд) - некоторая сводная характеристика выборки. Для каждой реализации выборки функция Fn(x) однозначно определена и обладает всеми свойствами функции распределения: изменяется от 0 до 1, не убывает и непрерывна справа. Она кусочно-постоянна и возрастает только в точках последовательности (1). Если все компоненты вектора различны (в последовательности (1) все неравенства строгие), то Fn(x) задается соотношениями

k=1,...,n-1

В этом случае величина скачка равна 1/n

В общем виде эмпирическую функцию распределения можно записать в виде

. (5)

В представлении (5) видна зависимость Fn(x) от выборки .

Эмпирическая функция распределения играет фундаментальную роль в обработке данных. Важное свойство эмпирической функции распределения состоит в том, что при увеличении объема выборки n происходит сближение Fn(x) с F(x).

Теорема 1.: Пусть Fn(x) - эмпирическая функция распределения, построенная по выборке =(X1,...,Xn) из распределения L(x), и F(x) - функция распределения x. Тогда для любого х (-¥<x<+¥) и любого e>0

(6)

Доказательство: Из (4) следует, что Fn(x) - относительная частота события {x£x} – («успеха») в n испытаниях Бернулли с вероятностью «успеха» F(x). Но по теореме Бернулли [относительная частота произвольного события в n независимых испытаниях сходится по вероятности при n®¥ к вероятности этого события], Fn(x) F(x), т.е. имеет место равенство (6)

Замечание.

Если объем выборки большой, то значение эмпирической функции распределения в каждой точке х может служить приближенным значением (оценкой) теоретической функции распределения в этой точке. Функцию Fn(x) называют еще статистическим аналогомдля F(x).

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 869. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.013 сек.) русская версия | украинская версия