Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эмпирическая функция распределения





Распределение выборки (эмпирическое распределение) – это распределение вероятностей, которое определяется по выборке для оценивания истинного распределения.

Определим для каждого действительного х случайную величину mn(x), равную числу элементов выборки =(X1,...,Xn), значения которых не превосходят х, т.е.

, (.3)

где I(A) - индикатор события А {I(A)=1, если А имеет место, и 0 - в противном случае}. Положим Fn(x)= .

Функция Fn(x) называется эмпирической функцией распределения (э.ф.р.), соответствующей выборке . Функцию распределения F(x) наблюдаемой случайной величины x называют теоретической функцией распределения.

По своему определению эмпирическая функция распределения – случайная функция: для каждого хÎR1 значение Fn(x) есть случайная величина, реализациями которой являются числа 0, 1/n, 2/n,..., (n-1)/n, n/n=1, при этом

P(Fn(x)=k/n)=P(mn(x)=k).

 

Из определения mn(х) следует, что L (mn(х))=Bi(n,p), где p=P(x£x)=F(x). Поэтому

P(Fn(x)=k/n)=CnkFk(x)(1-F(x))n-k, k=0,1,...,n. (4)

 

Итак, эмпирическая функция распределения (как и вариационный ряд) - некоторая сводная характеристика выборки. Для каждой реализации выборки функция Fn(x) однозначно определена и обладает всеми свойствами функции распределения: изменяется от 0 до 1, не убывает и непрерывна справа. Она кусочно-постоянна и возрастает только в точках последовательности (1). Если все компоненты вектора различны (в последовательности (1) все неравенства строгие), то Fn(x) задается соотношениями

k=1,...,n-1

В этом случае величина скачка равна 1/n

В общем виде эмпирическую функцию распределения можно записать в виде

. (5)

В представлении (5) видна зависимость Fn(x) от выборки .

Эмпирическая функция распределения играет фундаментальную роль в обработке данных. Важное свойство эмпирической функции распределения состоит в том, что при увеличении объема выборки n происходит сближение Fn(x) с F(x).

Теорема 1.: Пусть Fn(x) - эмпирическая функция распределения, построенная по выборке =(X1,...,Xn) из распределения L (x), и F(x) - функция распределения x. Тогда для любого х (-¥<x<+¥) и любого e>0

(6)

Доказательство: Из (4) следует, что Fn(x) - относительная частота события {x£x} – («успеха») в n испытаниях Бернулли с вероятностью «успеха» F(x). Но по теореме Бернулли [относительная частота произвольного события в n независимых испытаниях сходится по вероятности при n®¥ к вероятности этого события], Fn(x) F(x), т.е. имеет место равенство (6)

Замечание.

Если объем выборки большой, то значение эмпирической функции распределения в каждой точке х может служить приближенным значением (оценкой) теоретической функции распределения в этой точке. Функцию Fn(x) называют еще статистическим аналогом для F(x).

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1101. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия