ОСНОВНЫЕ ПОНЯТИЯ И ЭЛЕМЕНТЫ ВЫБОРОЧНОЙ ТЕОРИИ
Исходные статистические данные – результат наблюдения некоторой совокупности случайных величин Совокупность наблюдаемых случайных величин Реализация выборки Под статистической моделью эксперимента в данном случае понимается набор ( Итак, статистическая модель определяется выборочным пространством Часто бывает ситуация, когда компоненты X1,...,Xn независимы и все распределены так же, как и некоторая случайная величина x. Это соответствует эксперименту, в котором проводятся повторные независимые наблюдения над случайной величиной x. Здесь FXi(xi)=Fx(xi) для всех i=1,...,n и Такую модель можно задать в терминах функции распределения Fx и тогда Если функции распределения из класса F заданы с точностью до значений некоторого параметра q с множеством возможных значений Q, то такая модель обозначается F ={F(x,q), qÎQ}, и называется параметрической. Известен тип распределения наблюдаемой случайной величины в этом случае, но не известен параметр, от которого зависит распределение. Параметр q может быть как скалярным, так и векторным; множество Q называется параметрическим. Пусть известно, что L (x) - нормальное распределение с известной дисперсией и неизвестным средним. Тогда статистическая модель имеет вид F ={F(x,q), qÎQ, Q=(-¥,¥)}, где функция распределения F(x,q) имеет плотность
Если и дисперсия неизвестна, то статистическая модель имеет вид F ={F(x,
Модель F ={Fx} называется абсолютно непрерывной или дискретной, если таковыми являются все составляющие класс F функции распределения. Рассматриваются только эти модели. Будем использовать единое обозначение fx(x)=f(x) (для параметрических моделей f(x,q)) как для плотности распределения случайной величины x в случае непрерывной модели, так и для вероятности Р(x=х) в случае дискретной модели.
Вопрос
|