ОСНОВНЫЕ ПОНЯТИЯ И ЭЛЕМЕНТЫ ВЫБОРОЧНОЙ ТЕОРИИ
Исходные статистические данные – результат наблюдения некоторой совокупности случайных величин =(X1,...,Xn), характеризующей исход изучаемого эксперимента. Эксперимент, обычно, состоит в проведении n испытаний, в которых результат i-го испытания описывается случайной величиной Xi, (i=1,...,n). Совокупность наблюдаемых случайных величин =(X1,...,Xn) называется выборкой; величины Xi, (i=1,...,n) называются элементами выборки; их число n - объемом выборки. Реализация выборки обозначается строчными буквами: =(x1,...,xn). Пусть ={ } – множество, на котором задано распределение случайного вектора , т.е. множество всех возможных значений выборки . Множество называется выборочным пространством. Выборочное пространство может быть либо n-мерным евклидовым пространством Rn или его частью, (если - непрерывна), либо состоять из конечного или счетного числа точек в Rn (если случайная величина - дискретна). Под статистической моделью эксперимента в данном случае понимается набор (,P), где P - класс допустимых распределений случайных величин , заданных на . Распределение вероятностей любой случайной величины однозначно определяется ее функцией распределения, поэтому статистическая модель задается обычно в терминах допустимых функций распределения выборки . Итак, статистическая модель определяется выборочным пространством и семейством функций распределения F, которому принадлежит неизвестная функция распределения (x1,...,xn)=P(X1£x1,...,Xn<xn),-¥< x1,...,xn<+¥ выборки =(X1,...,Xn). Часто бывает ситуация, когда компоненты X1,...,Xn независимы и все распределены так же, как и некоторая случайная величина x. Это соответствует эксперименту, в котором проводятся повторные независимые наблюдения над случайной величиной x. Здесь FXi(xi)=Fx(xi) для всех i=1,...,n и ()=Fx(x1)... Fx(xn). Такую модель можно задать в терминах функции распределения Fx и тогда =(X1,...,Xn) - выборка из распределения случайной величины x. Множество возможных значений x с распределением Fx называют генеральной совокупностью (или просто совокупностью), а - выборкой из этой совокупности. Обозначение таково: =(X1,...,Xn) есть выборка из L (x), где L (x)– распределение x. Если функции распределения из класса F заданы с точностью до значений некоторого параметра q с множеством возможных значений Q, то такая модель обозначается F ={F(x,q), qÎQ}, и называется параметрической. Известен тип распределения наблюдаемой случайной величины в этом случае, но не известен параметр, от которого зависит распределение. Параметр q может быть как скалярным, так и векторным; множество Q называется параметрическим. Пусть известно, что L (x) - нормальное распределение с известной дисперсией и неизвестным средним. Тогда статистическая модель имеет вид F ={F(x,q), qÎQ, Q=(-¥,¥)}, где функция распределения F(x,q) имеет плотность , -¥<x<¥. Если и дисперсия неизвестна, то статистическая модель имеет вид F ={F(x, ), =(q1,q2)ÎQ}, где Q={(q1,q2): -¥<q1<¥, 0<q2<¥} и F(x, ) имеет плотность , -¥<x<¥. Модель F ={Fx} называется абсолютно непрерывной или дискретной, если таковыми являются все составляющие класс F функции распределения. Рассматриваются только эти модели. Будем использовать единое обозначение fx(x)=f(x) (для параметрических моделей f(x,q)) как для плотности распределения случайной величины x в случае непрерывной модели, так и для вероятности Р(x=х) в случае дискретной модели.
Вопрос
|