Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определения и свойства выборочных характеристик




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Пусть =(X1,X2,...,Xn) - выборка из распределения L(x). F(x) и Fn(x) - соответственно теоретическая и эмпирическая функции распределения. Точно так же, как функции F(x) ставят в соответствие Fn(x), любой теоретической характеристике можно поставить в соответствие ее статистический аналог G=G( ), определяемый по формуле

.

Случайную величину G называют эмпирическойили выборочной характеристикой, соответствующей теоретической характеристике g. Таким образом, выборочная характеристика - это среднее арифметическое значение функции g(x) для элементов выборки . Если g(x)=xk, то G - выборочный момент k-го порядка, обозначается Ak

, (1.10)

(значение начального момента k-го порядка ).

При k=1 величину Ak называют выборочным средним и обозначают

.

Значения случайных величин Ak и для данной реализации выборки обозначают строчными буквами ak и = a1.

Выборочным центральным моментом k-го порядканазывают случайную величину

,

(значение выборочного момента ).

При k=2 величину Mk называют выборочной дисперсией и обозначают S2= S2( ):

.

 

Замечания.

Выборочные моменты являются случайными величинами, поскольку являются функциями выборки.

Выборочные моменты имеют свои функции распределения и числовые характеристики.

Рассмотрим некоторые характеристики распределения среднего и S2 выборки. Так как. Xi - независимы и распределены так же, как и наблюдаемая случайная величина x, то

; .

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 315. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.016 сек.) русская версия | украинская версия








Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7