Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гистограмма и полигон частот





Итак, эмпирическая функция распределения – удобный способ представления статистических данных (выборки ). Он позволяет делать выводы о распределении наблюдаемой случайной величины x, когда оно неизвестно. По эмпирической функции распределения. Fn(x) при n®¥ со сколь угодно высокой точностью можно восстановить неизвестную теоретическую функцию распределения F(x).

Рассмотрим другие способы представления статистических данных. Пусть наблюдаемая случайная величина x дискретна и принимает значения x1,x2,... Представление о законе распределения x дадут частоты nr/n, где nr - число элементов выборки =(X1,...,Xn), принявших значение xr:

.

В этом случае, по теореме Бернулли, при n®¥

Пусть x - непрерывная случайная величина и имеет непрерывную плотность распределения f(x). Рассмотренную методику применим для оценивания неизвестной плотности. Это осуществляется с помощью метода группировки наблюдений (или метода группировки данных), который состоит в следующем.

Пусть {er} - некоторое разбиение области e возможных значений x: e= er, eiÇej=Æ, i¹j и nr= (XjÎer) - число выборочных точек [элементов выборки =(X1,X2,...,Xn)], попавших в интервал er. Тогда при n®¥, по теореме Бернулли,

P(xÎer)= .

По теореме о среднем значении, последний интеграл равен ½er½f(xr), где xr некоторая внутренняя точка интервала er, а ½er½ - его длина. Обычно интервалы выбираются одинаковой длины, и если длина интервала мала, то в качестве xr берут середину интервала. Поэтому можно считать ½er½f(xr) или

. (1.9)

Построим теперь кусочно-постоянную функцию , при xÎer, r=1,2,..., называемую гистограммой. При n®¥ и достаточно мелком разбиении {er} гистограмма fn(x) будет оценкой f(x) - теоретической плотности. Если плотность достаточно гладкая функция, то ее лучше приблизить кусочно-линейными графиками. Оценка гладких f(x) основама на построении полигона частот. Полигон частот - это ломанная, которую строят так: если построена гистограмма, то ординаты, соответствующие средним точкам интервалов, последовательно соединяют отрезками прямых. Такой кусочно-линейный график является статистическим аналогом (оценкой) теоретической плотности

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 675. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия