Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гистограмма и полигон частот





Итак, эмпирическая функция распределения – удобный способ представления статистических данных (выборки ). Он позволяет делать выводы о распределении наблюдаемой случайной величины x, когда оно неизвестно. По эмпирической функции распределения. Fn(x) при n®¥ со сколь угодно высокой точностью можно восстановить неизвестную теоретическую функцию распределения F(x).

Рассмотрим другие способы представления статистических данных. Пусть наблюдаемая случайная величина x дискретна и принимает значения x1,x2,... Представление о законе распределения x дадут частоты nr/n, где nr - число элементов выборки =(X1,...,Xn), принявших значение xr:

.

В этом случае, по теореме Бернулли, при n®¥

Пусть x - непрерывная случайная величина и имеет непрерывную плотность распределения f(x). Рассмотренную методику применим для оценивания неизвестной плотности. Это осуществляется с помощью метода группировки наблюдений (или метода группировки данных), который состоит в следующем.

Пусть {er} - некоторое разбиение области e возможных значений x: e= er, eiÇej=Æ, i¹j и nr= (XjÎer) - число выборочных точек [элементов выборки =(X1,X2,...,Xn)], попавших в интервал er. Тогда при n®¥, по теореме Бернулли,

P(xÎer)= .

По теореме о среднем значении, последний интеграл равен ½er½f(xr), где xr некоторая внутренняя точка интервала er, а ½er½ - его длина. Обычно интервалы выбираются одинаковой длины, и если длина интервала мала, то в качестве xr берут середину интервала. Поэтому можно считать ½er½f(xr) или

. (1.9)

Построим теперь кусочно-постоянную функцию , при xÎer, r=1,2,..., называемую гистограммой. При n®¥ и достаточно мелком разбиении {er} гистограмма fn(x) будет оценкой f(x) - теоретической плотности. Если плотность достаточно гладкая функция, то ее лучше приблизить кусочно-линейными графиками. Оценка гладких f(x) основама на построении полигона частот. Полигон частот - это ломанная, которую строят так: если построена гистограмма, то ординаты, соответствующие средним точкам интервалов, последовательно соединяют отрезками прямых. Такой кусочно-линейный график является статистическим аналогом (оценкой) теоретической плотности

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 675. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия