Гистограмма и полигон частот
Итак, эмпирическая функция распределения – удобный способ представления статистических данных (выборки ). Он позволяет делать выводы о распределении наблюдаемой случайной величины x, когда оно неизвестно. По эмпирической функции распределения. Fn(x) при n®¥ со сколь угодно высокой точностью можно восстановить неизвестную теоретическую функцию распределения F(x). Рассмотрим другие способы представления статистических данных. Пусть наблюдаемая случайная величина x дискретна и принимает значения x1,x2,... Представление о законе распределения x дадут частоты nr/n, где nr - число элементов выборки =(X1,...,Xn), принявших значение xr: . В этом случае, по теореме Бернулли, при n®¥ Пусть x - непрерывная случайная величина и имеет непрерывную плотность распределения f(x). Рассмотренную методику применим для оценивания неизвестной плотности. Это осуществляется с помощью метода группировки наблюдений (или метода группировки данных), который состоит в следующем. Пусть {er} - некоторое разбиение области e возможных значений x: e= er, eiÇej=Æ, i¹j и nr= (XjÎer) - число выборочных точек [элементов выборки =(X1,X2,...,Xn)], попавших в интервал er. Тогда при n®¥, по теореме Бернулли, P(xÎer)= . По теореме о среднем значении, последний интеграл равен ½er½f(xr), где xr некоторая внутренняя точка интервала er, а ½er½ - его длина. Обычно интервалы выбираются одинаковой длины, и если длина интервала мала, то в качестве xr берут середину интервала. Поэтому можно считать ½er½f(xr) или . (1.9) Построим теперь кусочно-постоянную функцию , при xÎer, r=1,2,..., называемую гистограммой. При n®¥ и достаточно мелком разбиении {er} гистограмма fn(x) будет оценкой f(x) - теоретической плотности. Если плотность достаточно гладкая функция, то ее лучше приблизить кусочно-линейными графиками. Оценка гладких f(x) основама на построении полигона частот. Полигон частот - это ломанная, которую строят так: если построена гистограмма, то ординаты, соответствующие средним точкам интервалов, последовательно соединяют отрезками прямых. Такой кусочно-линейный график является статистическим аналогом (оценкой) теоретической плотности
Вопрос
|