Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимптотическое поведение выборочных моментов. Теорема Слуцкого





Рассмотрим поведение выборочных моментов Ak, определяемых равенством (1.10) при n®¥ [неограниченном возрастании n]. Чтобы подчеркнуть зависимость моментов Ak от n (объема выборки), будем использовать обозначение Ank. Первые два момента случайной величины. Ank определяются следующими равенствами: (предполагаем, что соответствующие моменты наблюдаемой случайной величины x существуют)

 

.(1.11)

 

На основании неравенства Чебышева отсюда следует, что при n®¥.

Таким образом, выборочный момент Ank можно рассматривать в качестве приближенного значения (оценки) соответствующего теоретического момента ak, когда число наблюдений n велико. Аналогичное утверждение справедливо и для выборочных центральных моментов и вообще для любых выборочных характеристик, которые имеют вид непрерывных функций от конечного числа величин Ank.

Этот вывод является следствием общей теоремы о сходимости функций от случайных величин.

Теорема 1.5 (Слуцкого). Пусть случайные величины сходятся по вероятности при к некоторым постоянным соответственно. Тогда для любой непрерывной функции случайная величина .

Доказательство: Функция непрерывна, поэтому для любого найдется такое, что при , . Введем события , . Тогда событие влечет событие , где событие можно представить как . Отсюда (1.12)

Далее, из сходимости по вероятности случайной величины имеем, что для данного и любого γ>0 найдется такое, что γ/r при .

Пусть , тогда при выполняются все неравенства .Следовательно, из формулы (1.12) получим , отсюда имеем при n → ∞, что и требовалось доказать.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия