Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимптотическое поведение выборочных моментов. Теорема Слуцкого





Рассмотрим поведение выборочных моментов Ak, определяемых равенством (1.10) при n®¥ [неограниченном возрастании n]. Чтобы подчеркнуть зависимость моментов Ak от n (объема выборки), будем использовать обозначение Ank. Первые два момента случайной величины. Ank определяются следующими равенствами: (предполагаем, что соответствующие моменты наблюдаемой случайной величины x существуют)

 

.(1.11)

 

На основании неравенства Чебышева отсюда следует, что при n®¥.

Таким образом, выборочный момент Ank можно рассматривать в качестве приближенного значения (оценки) соответствующего теоретического момента ak, когда число наблюдений n велико. Аналогичное утверждение справедливо и для выборочных центральных моментов и вообще для любых выборочных характеристик, которые имеют вид непрерывных функций от конечного числа величин Ank.

Этот вывод является следствием общей теоремы о сходимости функций от случайных величин.

Теорема 1.5 (Слуцкого). Пусть случайные величины сходятся по вероятности при к некоторым постоянным соответственно. Тогда для любой непрерывной функции случайная величина .

Доказательство: Функция непрерывна, поэтому для любого найдется такое, что при , . Введем события , . Тогда событие влечет событие , где событие можно представить как . Отсюда (1.12)

Далее, из сходимости по вероятности случайной величины имеем, что для данного и любого γ>0 найдется такое, что γ/r при .

Пусть , тогда при выполняются все неравенства .Следовательно, из формулы (1.12) получим , отсюда имеем при n → ∞, что и требовалось доказать.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия