Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимптотическое поведение выборочных моментов. Теорема Слуцкого





Рассмотрим поведение выборочных моментов Ak, определяемых равенством (1.10) при n®¥ [неограниченном возрастании n]. Чтобы подчеркнуть зависимость моментов Ak от n (объема выборки), будем использовать обозначение Ank. Первые два момента случайной величины. Ank определяются следующими равенствами: (предполагаем, что соответствующие моменты наблюдаемой случайной величины x существуют)

 

.(1.11)

 

На основании неравенства Чебышева отсюда следует, что при n®¥.

Таким образом, выборочный момент Ank можно рассматривать в качестве приближенного значения (оценки) соответствующего теоретического момента ak, когда число наблюдений n велико. Аналогичное утверждение справедливо и для выборочных центральных моментов и вообще для любых выборочных характеристик, которые имеют вид непрерывных функций от конечного числа величин Ank.

Этот вывод является следствием общей теоремы о сходимости функций от случайных величин.

Теорема 1.5 (Слуцкого). Пусть случайные величины сходятся по вероятности при к некоторым постоянным соответственно. Тогда для любой непрерывной функции случайная величина .

Доказательство: Функция непрерывна, поэтому для любого найдется такое, что при , . Введем события , . Тогда событие влечет событие , где событие можно представить как . Отсюда (1.12)

Далее, из сходимости по вероятности случайной величины имеем, что для данного и любого γ>0 найдется такое, что γ/r при .

Пусть , тогда при выполняются все неравенства .Следовательно, из формулы (1.12) получим , отсюда имеем при n → ∞, что и требовалось доказать.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия