Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оптимальные оценки. Теорема об оптимальности оценок





 

Пусть требуется оценить параметрическую функцию t=t(q) в модели F ={F(x;q),qÎQ} по статистической информации, доставляемой выборкой =(X1,...,Xn). Пусть статистика Т=Т() удовлетворяет условию (3). Класс несмещённых оценок обозначим Tt. Таким образом, TÎ Tt тогда и только тогда, когда выполнено условие (3). Дополнительно предположим, что дисперсии всех оценок из класса Tt конечны:

для любых TÎ Tt и qÎQ.

В этом случае точность оценок можно измерять величиной их дисперсии и мы получаем простой критерий сравнения различных оценок из класса Tt. Если

(4)

то по критерию минимума дисперсии оценка Т* равномерно (по параметру q) не хуже оценки Т; если же в (4) строгое неравенство выполняется хотя бы при одном q, то следует отдать предпочтение Т, как более точной оценке. Если условие (4) выполняется для любой оценки TÎ Tt, то Т* называют несмещённой оценкой с равномерно минимальной дисперсией. Такую оценку для краткости называют оптимальной, и обозначают t*, так как она относится к функции t(q).

Итак, оптимальной является оценка t*Î Tt, для которой выполняется условие

Dqt*= ,

Требование равномерной минимальной дисперсии сильное и не всегда имеет место. Однако оно выделяет оптимальную оценку в классе Tt однозначно, если такая оценка существует, о чём свидетельствует следующая теорема.

Теорема 2.2. Пусть Тii(), i=1,2 - две оптимальные оценки для t=t(q). Тогда Т12.

Доказательство рассматривать не будем.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия