Оптимальные оценки. Теорема об оптимальности оценок
Пусть требуется оценить параметрическую функцию t=t(q) в модели F ={F(x;q),qÎQ} по статистической информации, доставляемой выборкой =(X1,...,Xn). Пусть статистика Т=Т() удовлетворяет условию (3). Класс несмещённых оценок обозначим Tt. Таким образом, TÎ Tt тогда и только тогда, когда выполнено условие (3). Дополнительно предположим, что дисперсии всех оценок из класса Tt конечны: для любых TÎ Tt и qÎQ. В этом случае точность оценок можно измерять величиной их дисперсии и мы получаем простой критерий сравнения различных оценок из класса Tt. Если (4) то по критерию минимума дисперсии оценка Т* равномерно (по параметру q) не хуже оценки Т; если же в (4) строгое неравенство выполняется хотя бы при одном q, то следует отдать предпочтение Т, как более точной оценке. Если условие (4) выполняется для любой оценки TÎ Tt, то Т* называют несмещённой оценкой с равномерно минимальной дисперсией. Такую оценку для краткости называют оптимальной, и обозначают t*, так как она относится к функции t(q). Итак, оптимальной является оценка t*Î Tt, для которой выполняется условие Dqt*= , Требование равномерной минимальной дисперсии сильное и не всегда имеет место. Однако оно выделяет оптимальную оценку в классе Tt однозначно, если такая оценка существует, о чём свидетельствует следующая теорема. Теорема 2.2. Пусть Тi=Тi(), i=1,2 - две оптимальные оценки для t=t(q). Тогда Т1=Т2. Доказательство рассматривать не будем.
Вопрос
|