Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оптимальные оценки. Теорема об оптимальности оценок





 

Пусть требуется оценить параметрическую функцию t=t(q) в модели F ={F(x;q),qÎQ} по статистической информации, доставляемой выборкой =(X1,...,Xn). Пусть статистика Т=Т() удовлетворяет условию (3). Класс несмещённых оценок обозначим Tt. Таким образом, TÎ Tt тогда и только тогда, когда выполнено условие (3). Дополнительно предположим, что дисперсии всех оценок из класса Tt конечны:

для любых TÎ Tt и qÎQ.

В этом случае точность оценок можно измерять величиной их дисперсии и мы получаем простой критерий сравнения различных оценок из класса Tt. Если

(4)

то по критерию минимума дисперсии оценка Т* равномерно (по параметру q) не хуже оценки Т; если же в (4) строгое неравенство выполняется хотя бы при одном q, то следует отдать предпочтение Т, как более точной оценке. Если условие (4) выполняется для любой оценки TÎ Tt, то Т* называют несмещённой оценкой с равномерно минимальной дисперсией. Такую оценку для краткости называют оптимальной, и обозначают t*, так как она относится к функции t(q).

Итак, оптимальной является оценка t*Î Tt, для которой выполняется условие

Dqt*= ,

Требование равномерной минимальной дисперсии сильное и не всегда имеет место. Однако оно выделяет оптимальную оценку в классе Tt однозначно, если такая оценка существует, о чём свидетельствует следующая теорема.

Теорема 2.2. Пусть Тii(), i=1,2 - две оптимальные оценки для t=t(q). Тогда Т12.

Доказательство рассматривать не будем.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 434. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия