Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимптотическая нормальность выборочных моментов





Введем дополнительные обозначения. Если распределение случайн0й величины hn сходится при n®¥ к распределению случайной величины h и при этом L (h)=N(m,s2), то будем писать L (hn)®N(mn,sn2). Будем считать, что случайная величина hn асимптотически нормальна с параметрами mn,sn2, N(mn,sn2) и записывать это так L (hn)~N(mn,sn2). Это означает, что L ®N(0,1).

Исследуем распределения выборочных характеристик для больших выборок (n®¥). Каждый выборочный момент Ank представляет собой сумму n независимых и одинаково распределенных случайных величин, поэтому к нему можно применить центральную предельную теорему. Имеет место следующая теорема.

Теорема 1.6: Выборочный момент Ank асимптотически нормален N(ak, (a2k- ak2)/n)

Доказательство: Так как (см. формулы (1.11)) ; , то по центральной предельной теореме L (hn)®N(0,1),

где

.

Следовательно, случайная величина Ank асимптотически нормальна с параметрами ak и (a2k- ak2)/n.

Эта теорема позволяет оценивать для больших выборок вероятность заданных отклонений значений выборочных моментов от теоретических. Действительно, из этой теоремы имеем, что при любом фиксированном t>0 и n®¥

.

В частности, из теоремы 1.6 следует, что выборочное среднее =An1 асимптотически нормально N(a1,m 2/n).

Отметим, что если L (x)=N(a1, m2 ), то случайная величина как сумма независимых нормальных случайных величин также нормальна с параметрами a1 и m 2/n, т.е. в этом случае L ()=N(a1, m 2/n) при любом n. Центральные выборочные моменты Mnk также при n®¥ обладают свойством асимптотической нормальности.

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1181. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия