Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема об асимптотической нормальности и эффективности оценок максимального правдоподобия





1. Оценка максимального правдоподобия º является состоятельной оценкой параметра q; т.е. º q.

2. При определённых условиях оценка максимального правдоподобия является асимптотически нормальной и эффективной.

Теорема 3.3.

Пусть функция правдоподобия L (x;q)

а) дважды дифференцируема по параметру q и

б) математическое ожидание от функции вклада равно нулю M[U(X;q)=0],

в) кроме того –M .

 

Тогда оценка максимального правдоподобия стремится к случайной величине

~N

(дисперсия совпадает с дисперсией эффективной оценки). Здесь q0 - истинное значение оцениваемого параметра.

Доказательство: Доказательство свойства асимптотической нормальности оценки МП (если рассматривать скалярный параметр) основывается на разложении функции вклада Un(q)=Un(;q) в ряд Маклорена относительно истинного значения параметра q0.

Поскольку состоятельная оценка параметра q, то при достаточно большом объёме выборки (n>>1), она будет близка к истинному значению q0. Поэтому функция вклада может быть представлена в виде ряда Маклорена в окрестности точки q0.

 

,

где Î(;q0)

В силу состоятельности оценки и условий теоремы первая дробь равна 0. Поэтому

.

Левую и правую часть умножим на R(q0)

.

Вклад выборки определяется по формуле

 

U(X;q)= = .

Рассмотрим знаменатель дроби:

в силу закона больших чисел, если элементы выборки независимы

n®¥ в виду состоятельности оценки.

Таким образом, знаменатель дроби стремится к 1.

Рассмотрим числитель дроби.

К случайной величине

применима центральная предельная теорема, по которой и с учётом соотношений:

,

i(q)= при n®¥

R(q0)( -q0)®h~N(0,1).

Сама оценка ® =g, так как g – линейная функция h.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 804. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия