Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема об асимптотической нормальности и эффективности оценок максимального правдоподобия





1. Оценка максимального правдоподобия º является состоятельной оценкой параметра q; т.е. º q.

2. При определённых условиях оценка максимального правдоподобия является асимптотически нормальной и эффективной.

Теорема 3.3.

Пусть функция правдоподобия L (x;q)

а) дважды дифференцируема по параметру q и

б) математическое ожидание от функции вклада равно нулю M[U(X;q)=0],

в) кроме того –M .

 

Тогда оценка максимального правдоподобия стремится к случайной величине

~N

(дисперсия совпадает с дисперсией эффективной оценки). Здесь q0 - истинное значение оцениваемого параметра.

Доказательство: Доказательство свойства асимптотической нормальности оценки МП (если рассматривать скалярный параметр) основывается на разложении функции вклада Un(q)=Un(;q) в ряд Маклорена относительно истинного значения параметра q0.

Поскольку состоятельная оценка параметра q, то при достаточно большом объёме выборки (n>>1), она будет близка к истинному значению q0. Поэтому функция вклада может быть представлена в виде ряда Маклорена в окрестности точки q0.

 

,

где Î(;q0)

В силу состоятельности оценки и условий теоремы первая дробь равна 0. Поэтому

.

Левую и правую часть умножим на R(q0)

.

Вклад выборки определяется по формуле

 

U(X;q)= = .

Рассмотрим знаменатель дроби:

в силу закона больших чисел, если элементы выборки независимы

n®¥ в виду состоятельности оценки.

Таким образом, знаменатель дроби стремится к 1.

Рассмотрим числитель дроби.

К случайной величине

применима центральная предельная теорема, по которой и с учётом соотношений:

,

i(q)= при n®¥

R(q0)( -q0)®h~N(0,1).

Сама оценка ® =g, так как g – линейная функция h.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 804. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия